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Abstract

The recognition of activities of daily living (ADL) in smart environments is well-known and is an

important branch of human-centred research, which presents the real-time state of humans in per-

vasive computing. Advances in wearable and unobtrusive technologies offer many opportunities

for Human activity recognition (HAR). While much progress has been made in HAR using wear-

able technology, it still, however, remains a challenging task using unobtrusive (non-wearable)

sensors. The process of recognizing human activities generally involves deploying a set of ob-

trusive and unobtrusive sensors, pre-processing the raw data, and building classification models

using machine learning (ML) algorithms. Integrating data from multiple sensors is a challenging

task due to the dynamic nature of data sources. This is further complicated due to semantic and

syntactic differences in these data sources. These differences become even more complex if the

data generated is imperfect, which ultimately has a direct impact on its usefulness in yielding an

accurate classifier. In this thesis, we propose a semantic imputation method to improve the qual-

ity of obtrusive and unobtrusive sensor data. We propose two different approaches to deal with

obtrusive and unobtrusive data sources. As a first approach we propose Multi-strategy Imputation

method, which uses a set of proposed ontologies "SemImputOnt" for data modelling and further

utilizes proposed semantic similarity learning. This is achieved by identifying semantic correla-

tions among sensor events through SPARQL queries, and by performing a time-series longitudinal

imputation. Furthermore, we applied deep learning (DL) based artificial neural network (ANN)

on public datasets to demonstrate the applicability and validity of the proposed approach. Sec-

ondly, to deal with unobtrusive data sources, we also propose a vision-based Multioccupant State

Imputation method for accurate detection and tracking of multi-occupant HAR. This method uses

a novel low-resolution Thermal Vision Sensor (TVS) in a smart-home environment. Specifically,
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for this, we propose an unobtrusive Multioccupant Detection and Tracking (uMoDT) method. The

uMoDT is a two-step framework, consisting of a Computer Vision (CV) based method to accu-

rately detect and track multiple occupants combined with Convolutional Neural Network (CNN)

based HAR. The proposed algorithm uses frame-difference over consecutive frames for occupant

detection, a set of morphological operations to refine identified objects, and features are extracted

before applying a Kalman filter for tracking of missing frames. These missed frames are imputed

in order to draw a comparison with the ground-truth to prove the robustness of the method. Later-

ally, a 19-layer CNN architecture is used for HAR and afterwards the results from both methods

are fused using time interval based sliding window.

Keeping in view the relevance of afore-mentioned facts and to improve complex HAR using

proposed semantic imputation techniques, this research, provides insights with the contribution in

the following areas:

(1) Multi-strategy Data Imputation; designed and developed a semantic data imputation

method for understanding the semantics of the human activity monitoring sensor data, select dif-

ferent variables, model data using a domain-specific ontology, identify semantic relations among

variables, validate the data against the ground-truth, fill in the missing variables and their values.

This method has the ability to deal with the sensor-based data of structured form.

(2) Multioccupant State Imputation; a method to perform an unobtrusive detection and occu-

pant state estimation in a vision-based approach. This method deals with an unobtrusive thermal

vision sensor, which generates low-resolution grayscale frames. The proposed and developed

method identifies human activities within the smart-home environment using low resolution ther-

mal frames in order to identify, detect, track and classify single, as well as, multioccupants.

Throughout this thesis, we performed both qualitative and quantitative evaluation of our pro-

posed methodology on publicly available benchmark datasets. We performed extensive experi-

mentation to evaluate (1) SemImput and (2) uMoDT methods. The extensive experimental results

show a higher accuracy with semantically imputed datasets using ANN for SemImput method.

We also presented a detailed comparative analysis, comparing the results with the state-of-the-art

from the literature. We found that our semantic imputed datasets improved the classification accu-

racy with 95.78% as a higher one thus proving the effectiveness and robustness of learned models.
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In order to validate uMoDT method, it was also evaluated through a series of experiments based

on benchmark Thermal Infrared datasets (VOT-TIR2016) and multi-occupant data collected from

TVS. Results demonstrate that the proposed method is capable of detecting and tracking 88.46%

of multi-occupants with a classification accuracy of 90.99% for HAR.
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Chapter 1
Introduction

This dissertation mainly focuses on investigating the problem of missing data in the multimodal

environment for human activity recognition (HAR). HAR has been studied for several decades

using real-time ambient environments or by utilizing publicly available datasets. In practice, the

collected dataset contains gaps in the shape of missing attribute values. This incompleteness may

arise due to a variety of sources, improper configuration, power failure or network error. Removal

of such data has a significant effect on analysis results for drawing conclusions. Therefore, a

strategy has to be derived to identify missingness and provide a suitable solution based on the

nature of sensors and their data. In this way, the quality of data is enhanced, which ultimately

will improve the classification accuracy for activities. The main motivations are discussed in

the opening chapter, the process of recovering the data missingness in Section 1.1, the problem

statement along with posed research questions are described in Section 1.2, key contributions to

address challenges of this research in Section 1.3, and lastly, the dissertation summary is outlined

in Section 1.4.

1.1 Motivation

Over the past few decades, a rapid advancement has been observed in pervasive computing for

the assessment of cognitive and physical well-being of older adults. For this purpose, monitoring

of Activities of Daily Living (ADLs) is often performed over extended periods of time [4]. This

is generally carried out in intelligent environments containing various pervasive computing and

sensing solutions. Sensors data from these intelligent environments has been playing a vital role

in machine learning tasks such as model learning which is complementary to the human-annotated

training data. However, due to misoperations, sensor data may have quality issues with a variety

1
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of missing values, which could result in the performance degradation of the learned model.

It is, therefore, an important step to understand the needs as to why data are missing and what

strategy would be suitable to treat the missingness using the state-of-the-art statistical analysis

approaches. As in literature there exist numerous approaches which includes: list-wise deletion

based on complete case analysis, single imputation methods (mean replacement / substitution or

single regression replacement), and multiple imputations. All aforementioned approaches make

mathematical-statistical assumptions which may hinder invalid empirical results. However, any

incorrect categorization or any invalid assumption may have substantial effects in terms of (1)

decreasing the prediction power to estimate models usually resulting from a decreased sample

size (2) leading to biased results with potentially incorrect inferencing, (3) and overestimating

errors mostly occurring through relative bias. So it evident that studying these substantial effects

is more important as if a large number of observations are not included in the statistical analysis,

the model may loose the statistical power and the resulting predictions may of lesser significance.

To keep the variance intact importance to the dependent variables and their relationships has to

be ascertained. As if any subset or a whole block of observations is ignored or dropped due to

missingness, would create systematically unacceptable results from the statistical analysis. As this

missingness will induce bias in the samples as well as in the subsequent estimates generated from

them [5]. Moreover, the usability of semantic imputation and feature extraction using ontological

methods in combination with deep neural networks for recognizing complex activities remains

to be investigated. Previous studies have not provided a comprehensive analysis of the impact of

imputation on the classification accuracy. To this end, we present research proving the applicability

of semantic imputation for missing sensors and their states on activity classification in a controlled

environment using deep-learning-based Artificial Neural Networks (ANNs). This combination of

semantic imputation with neural networks in a supervised learning method using public datasets

not only increases accuracy but also reduces the complexity of training data. The presented work

is, to the best of our knowledge, the first to exploit ontologies, semantic imputation, and neural

networks.

Over several decades, advances in pervasive computing have offered great promise towards the

potential of indoor localization and Human Activity Recognition (HAR) [6]. Over this period, sig-
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nificant research effort has been targeted towards the creation of solutions that can reliably monitor

individuals through the use of on-body wearable sensors, dense sensors, and vision sensors [7].

Whilst results utilizing on-body sensors has improved greatly, wearable solutions are often said to

be impractical, as they can be difficult to carry or inconvenient to wear continuously [8]. Addition-

ally, vision sensors capable of capturing RGB or grayscale images have been studied intensively

within the Computer Vision (CV) domain. The use of cameras, however, raises serious privacy

concerns [9].

Recently, researchers have been investigating the potential of deploying unobtrusive, inex-

pensive and low-resolution Thermal Vision Sensors (TVS) for occupant detection and pervasive

sensing [10]. Similar to traditional vision-based approaches, TVS suffer from same limitations

for handling complex object appearances due to shape deformation, low resolution, varying num-

ber of objects, pose variation, motion estimation, and object re-identification [11] due to missing

information. TVS do, however, address some of the challenges as they tend to be more robust

to illumination changes, can operate even in complete darkness and offer less intrusion on user’s

privacy [12].

The majority of research into HAR has focused on single-occupant environments. Neverthe-

less, living environments are usually inhabited by more than one person. Therefore, HAR in the

context of multi-occupancy would provide a more practical solution, however, also more chal-

lenging. The difficulty with multi-occupant HAR stems from two related challenges in occupant

identification, known as data association, and the diversity of human activities.

In CV, object tracking remains one of the most significant research challenges [13, 14]. This

becomes even more complex when using TVS for monitoring multi-occupants, as data only cor-

responds to variation in temperature. Therefore a different strategy is required for identification

and re-identification of the occupants [15] when the information is missing. The aforementioned

challenges are addressed by proposing and implementing a robust CV-based integrated framework

for multi-occupant detection, tracking and HAR based on TVS.

The key objectives being addressed in this study are to: (1) design and development of a prac-

tical scheme for modelling time-series data into an ontology, (2) perform semantic data expansion

using the semantic properties, (3) identify suitable semantic data imputation measure, (4) design
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and train an effective deep learning model for Human Activity Recognition (HAR), and (5) under-

take a comparative analysis using public datasets with each having different rates of missing data

and imputation challenges.

1.2 Problem Statement

In the real world environment, building an accurate activity recognition model remains a problem

due to missing data, which reduces an overall performance and robustness. There are three types

of problems which are usually analogous with MVs in any multivariate dataset and their analysis

tasks [16]: (1) prediction efficiency loss; (2) complexities while handling, manipulating and ana-

lyzing multivariate data; and finally (3) bias occurring due to the differences between missing and

complete data. A simple solution where there is an abundance of data is to delete but this process

becomes challenging when the data is of small size. So rejecting a variable may result in the loss

of predictive power. It also effects the ability to detect statistical significance to both missing and

complete data and may become a source of bias affecting the conclusions through conventional

classifications or data mining tasks. For these reasons, data variable selection representing sensors

need to be identified as a source to the missing data. Thus imputation can be performed after

selection of missing data variables. Most of the statistical methods adapt general steps for han-

dling missing data such as (1) Identify the patterns; (2) observe the portion of missing data; (3)

choose the imputation method based on a similarity measure, maximum likelihood or any other

metric. In this thesis, the goal is to improve HAR by recovering missing values by understanding

inter-variable semantics in the observed data through an accurate data imputation methodology.

To achieve the goal, the objectives are to design and develop a semantic data imputation method-

ology for understanding the semantics of the HAR sensor variables and fill in the missing values.

It also requires a process to evaluate the proposed methods by deep learning HAR classification

for its accuracy and robustness while avoiding the bias in the complete dataset.

Following are the prominent challenges to the proposed methods.

• How to minimize the missing values and maximize the quality of datasets by keeping se-

mantics intact? [7,8]
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• How to provide an empirical method to prove data consistency and improved accuracy for

both structured and unstructured HAR data? [16]

• How to prove the robustness of proposed methods? [4]

In this section, we first introduce key definitions, which are carried throughout the paper.

These definitions are necessary for understanding concepts referred to in this paper. Later, a robust

illustrative example is presented to represent the research problem for HAR referred in this study.

1.2.1 Some Definitions

In this section, we first give preliminary definitions of problems that the methodology aims to

address. Laterally, we introduce the notion of Semantic imputation.

Definition 1 (Formal Notation) Let {D1,D2, . . . ,Dn} be the set of multimodal sensory data

of the form (p×q) matrices modelled over the domain ontologies {O1,O2, . . . ,On} respectively,

where p represents the number of observations for q concepts (variables).

Definition 2 (Training Tuples) Let Td = {t1, ..., tp} be the set of training tuples for dataset

Dn containing missing attributes or their values. Let tm is a tuple with q attributes {A1, . . . Aq},

which may have one or more missing attributes or its value where tm ∈ Td. Let tma be the missing

attribute A and tmv be the missing value on attribute A where A ∈ Aq. Given a candidate imputed

set, tm =
⋃m

1 (tma ∪ tmv) for a possible missing attributes or its value for tm.

Definition 3 (Ontology) A core ontology is a structure O := (C,≤c, R, σ,≤r) consisting of

two disjoint sets concept identifiers ’C’ and relation identifiers ’R’, a partial order ≤c on C, called

concept hierarchy or taxonomy, a function σ representing signature, and a partial order ≤r on R

defining relation hierarchy.

Definition 4 (Ontology-based Tuples) Given ok and ol in O, (ok, ol) is called an ontology-

based tuple, if and only if: (1) ∃ A, B ∈ C | ok ∈ A and ol ∈ B; (2) A 7→ B; and (3) λok (ol)

≤ γ.

Definition 5 (Knowledge-base)A Knowledge BaseK is conceptually referred to a combination

of intentional terminologies TBox (T ) part and extensional assertion ABox (A) part modeled over

an ontology O. T includes concept modeling and the relations in ontology O and A includes

concept instances and roles.
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Definition 6 (Conjunctive Query) Conjunctive queries Q enable answers by identifying at-

tributes or their values, which are rewritten as

∀ĀR̄(Ā, C̄k) ∧ not(N̄(Ā, C̄k)) (1.1)

where Ā represents vector of attributes (A1, . . . , Aq), vectors of concept instances C̄k, conjoined

predicates (relations) R̄, and a vector of disjoined predicates (relations) N̄ .

1.2.2 Problem Formulation: Semantic Imputation

A Knowledge Base is a consistent structure K = (T ,A), and we revise the Abox A to AI such

that K =
(
T ,AI

)
should also be consistent:

AI = A ∪ I(Am) since (Am = Dn \ A) (1.2)

I(Am) = ISS(Am) + ISI(Am) + IL(Am) (1.3)

where Am represents missing attributes or their values and ISS(Am), ISI(Am), IL(Am) mea-

sure structural-based, instance-based and longitudinal imputations for missing attributes and their

values, respectively.

Hence, we define our problem in a 4-tuple (D, K, Q, I) such that D denotes the input data,

modeled over the ontologyO having assertion setA which are retrieved using conjunctive queries

Q with the results used to perform semantic imputation I(Am) introducing improved assertions

AI . We ensure that, during the whole process, K remains consistent with the addition of imputed

assertions AI .

1.3 Key Contributions

We summarize the main contributions of this thesis as below:
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1.3.1 Time-Series SemImput Ontology Modeling

Design and development of a practical scheme for modelling time-series data into an ontology to

facilitate the discovery of data, its sources and relationships amongst them. It becomes challenging

due to the data complexity and its variety of data producing data sources. Moreover, the ontology

is also used to provide additional support in the realization, intelligently retrieval management,

and imputation methods.

1.3.2 Novel Semantic Data Expansion

For performing semantic data expansion, the semantic properties of the sequential, concurrent,

and parallel activities of daily living are inspected and retrieved using ontology models. This was

achieved by using specially designed semantic queries for finding, inspecting, retrieving the sensor

events and underlying sensors.

1.3.3 Improved Semantic Data Imputation

Utilized ontology modelling supported with reasoning to perform high-quality imputation to fill

the missing data with minimal bias and computational efforts. The proposed method successfully

improves the accuracy of imputed public HAR datasets when compared to HAR without imputa-

tion. Semantic imputation is performed based on the nature of the specific sensor and understand-

ing the semantics of categorical or continuous data. This is achieved by exploiting ontology-based

complex activity structures, and conjunction separation. Our proposed method includes different

imputation measures such as: (1) Structure-based, (2) Instance-based, and (3) longitudinal impu-

tation. These measures deal with the imputation of a single value or multiple values by keeping

the focus on the data repair, which is closed to the initial values based on the minimum change

principle.

1.3.4 Refined Morphological Characteristics

We rely on refined morphological characteristics, which ensure efficient detection and tracking

accuracy over the dynamic patterns for non-rigid moving targets per-frame. For this, we propose a

technique, which obtains effective and optimal results in terms of its quality, efficiency, and time.
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A binarizing operation is suggested on grayscale thermal frames with global thresholding. The

morphological features of grayscale thermal frames are further enhanced using morphological op-

erators erosion and dilation for selected features and suppressing noise. An appropriate threshold

value plays a major role in separating background and foreground, an essential task required for

detection and tracking of multioccupant in frames.

1.3.5 Robust CV-based State Imputation

To overcome the missing objects in the frames, We propose an online method, which uses a CV-

based algorithm, with improved morphological features with a low computational load. It per-

forms an automatic multi-target initialization using frame differencing with an optimum threshold.

Kalman Filter is applied with modified features for occupant tracking, however, for any missed

state, estimated occupant location is also obtained.

1.3.6 Accurate Track Assignment

We use the Hungarian method for track assignment problem with an approach for maintaining

an association history of re-identified tracks of individual moving objects per-frame. Both of the

Kalman filter and the Hungarian method are used collectively to predict the occupant’s position in

the frame especially for the cases where there is a missing observation due to a false negative or

imperfect communication.

1.3.7 Comprehensive HAR Evaluations and Comparative Analysis

Design and train an effective deep learning model to study the impact of imputation on classifi-

cation performance for Human Activity Recognition (HAR) using both sensor-based and vision-

based datasets. The statistical significance in terms of accuracy and robustness performances were

obtained for unaugmented models over non-imputed datasets and augmented DL models trained

on complete datasets with imputation effect. The consistency in the accuracies for each of the ac-

tivity in the HAR dataset provides enough evidence for the model learning robustness. Similarly, a

comparative analysis was also undertaken by using public sensor-based and vision-based datasets

with each one having a different set of activities, rate of missing data and imputation challenges.
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The proposed methodology is validated using a thermal vision sensor dataset gathered at Smart

Environments Research Group SERG) laboratory from the Ulster University, UK. It also proved to

be computationally robust and achieves a promising tracking accuracy in comparison with other

MOT methods. We also demonstrated quantitative evaluations on the publicly available vision-

based dataset for the VOT-TIR 2016 challenge proving the practicality and efficacy of the proposed

framework with the state-of-the-art. Additionally, we propose to apply a CNN architecture to

extract and learn spatial features from multiple successive Thermal Vision Sensor Frame (TVS-F)

for individual action recognition.

1.4 Thesis Organization

The dissertation aims at investigating an accurate and robust data imputation methodology to im-

pute the missing values in sensor-based and vision-based thermal camera HAR datasets to recog-

nize complex human activities in a smart-home environment. Figure 1.1 provides the dissertation

overview, summarizes the dissertation structure and its flow. This thesis is further organized into

the following chapters.

• Chapter 1: Introduction. Chapter 1 encompasses the introduction of the research work

for robust unobtrusive human activity recognition methods by using suitable semantic im-

putation method. It focuses on the motivation for this research, preliminary definitions,

problems in areas, the goals to achieve to solve these problems, key contributions, the ob-

jectives achieved through this research work, and finally the overview of dissertation and

organization.

• Chapter 2: Related work. Chapter 2 provides a detailed review of previous research related

to semantic data imputation for unobtrusive sensing streams in an organized manner. This

research focuses on presenting a flexible and comprehensive semantic imputation methodol-

ogy to deal with sensor missing data for recognizing accurate human activities. Therefore,

we conclude with an overview of several methodological studies of semantic imputation

sensor-based and computer vision-based approaches. Various research directions related to

(1) sensing technologies involved in recognizing unobtrusive human activities, (2) proposed
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Figure 1.1: Idea diagram representation and mappings of chapters with proposed research studies.
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HAR learning models in the literature, (3) a detailed review for existing methods for per-

forming data imputation techniques, and (4) summary of related literature to the proposed

methodology for semantic imputation for both HAR and Computer vision datasets are dis-

cussed in each subsection. Finally, we summarize the related works that identified missing

value states and providing semantic imputation solution for the proposed methodology.

• Chapter 3: Multi-strategy Data Imputation. In this chapter, we present high-level

overview of the Semantic Imputation (SemImput) functional framework to fully utilize a

methodology for identifying missing sensors and their states from given HAR datasets. For

the SemImput framework, we first propose a SemImput ontology to model time-series HAR

sensors and their datasets. For this, expert knowledge has to be established regarding the

nature of sensors and their states for recognizing activities. The SemImput framework in-

volves a sequence of proposed ontology-based data alignment using Data alignment and

re-sampling algorithm, preprocessing using proposed Semantic Data Expansion methods

conjunction separation technique, identification of missing sensor states, a methodology

to fill in those states using proposed Semantic Data Imputation method through SPARQL

queries, and finally completion of HAR datasets for missing sensors and their states using

Instance-based and Longitudinal imputation measure. We also present the preparation of

Semantically Imputed datasets for classification using One-Hot Code Vectorization, which

is an experimental requirement for applying proposed Semantic Deep Learning-based Arti-

ficial Neural Network (SemDeep-ANN).

• Chapter 4: Vision-based Multioccupant State Imputation. This chapter describes a

methodology to construct the Computer Vision (CV)-based occupant detection, tracking,

predicting for missing objects using proposed unobtrusive Multi-occupant Detection and

Tracking (uMoDT) framework. A detailed description is provided for the proposed Ther-

mal Vision Sensor multi-occupant frame vector (TVS-MoFV) algorithm, which improves

the morphological features in grayscale thermal frames. This chapter also describes the ex-

perimental setup and implementation details for uMoDT framework to evaluate collected

TVS and benchmark datasets.
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• Chapter 5: Evaluations and Results. This chapter presents the application of deep learn-

ing algorithm for training of model for both incomplete and semantically complete datasets

and finally, perform HAR test data classification. In this chapter we introduce (1) Predicted

data validation against ground-truth using suitable metrics (2) the SemDeep-ANN, which

measures the impact of both imputation against non-imputed datasets using evaluation met-

rics such as accuracy, precision and f-measure, (3) classification performance of SemImput

framework for public datasets, (4) confusion matrix per-class HAR for non-imputed and

imputed datasets, (5) evaluation of uMoDT framework with Thermal Sensor Frames and

benchmark sequences, and (6) a comparison between uMoDT robustness and accuracy.

• Chapter 6: Conclusion and future directions. This chapter draws the concluding remarks

for the dissertation and also provides future directions in this research area. Furthermore, it

also suggests the potential applications areas of the proposed methodology.



Chapter 2
Related Work

This chapter provides detailed insights for various existing studies related to data missingness in

structured and unstructured forms, mechanisms for addressing them through missing data impu-

tation methods and lastly its impact on HAR. This research targets various areas related to (1)

complex human activity recognition through structured and unstructured data, (2) unobtrusive

sensing technologies, (3) deal with data missingness for obtrusive and unobtrusive data sources

and (4) provides a summarized picture for all modalities in the last section.

2.1 Overview of Complex Human Activity Recognition

An automated recognition of a set of human activities requires data acquisition from suitable sen-

sors, to find patterns through optimal methods for describing them in terms of the data gathered

by available sensors, and to bifurcate them from each other. In turn, this requires suitable sen-

sors, which could identify these set of activities, which are of particular interest in a way that

they can be distinguishable and recognizable [17]. The collected sensors data can provide a good

approximation to the user interaction with the surroundings and these recognized activities are

an essential ingredient of ubiquitous and pervasive computing systems [18] acting as a key tech-

nology, which results for applications to be aware of the situation of their users and interaction

with the environment. Nowadays, the most dominant user interaction information consumers are

mobile applications, which engage different capabilities of sensors in the shape of HAR [19].

13
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2.2 Overview of Unobtrusive Sensing

Activity recognition and monitoring processes can be executed using wearable sensors and non-

wearable video cameras at smart-homes, rehabilitation nursing homes or even at medical care

units. These sensors may pose several problems ranging from battery life and wearability to a

feeling of discomfort and privacy concerns [20]. The subsequent subsections, therefore, discusses

the use of a non-charged, non-wearable, unobtrusive and a privacy-enhanced sensing solution

in more detail. In addition to cameras, there exist potential unobtrusive sensing solutions using

thermal, radar, optical, ultrasound sensing, and various object-based sensing technologies. These

technologies provide solutions aimed at monitoring and recognizing human activities using a sin-

gle or a combination of unobtrusive sensing devices. The identification of these sensor types,

which better suites for HAR over given set of human activities is a complex and still unsolved

issue. There exist several commonly adopted sensing strategies for HAR, which can be grouped

mainly in three categories [17]:

• Body-worn inertial sensors, embedded in smartwatches and smartphones [21] and possibly

complemented by other wearable sensors, have recently gained increasing popularity for HAR.

The need for considering this dataset is to tailor a framework for ADLs recognition and per-

form the research using sensors, as most of the technologies nowadays are underscored by the

elderly people, their health and importance of their occupancy state. So for them, associated activ-

ities might affect their functionality of daily life. So ADLs recognition from multimodal sensors

for each segment of a daily routine i.e. morning, afternoon and evening in a controlled environ-

ment is the primary motivation behind this study.

• HAR systems mainly based on distributed environmental sensors usually aim at design and

development of cost-effective [22] unobtrusive solutions for behavioural anomaly detection or

activities requiring the interaction with home appliances.

The selected aggregation strategy for data-level fusion determines the way in which multi-

modal data reach the fusion node [23]. At the fusion node, different ADLs can be best be recog-

nized by selecting the appropriate fusion strategy with variable window lengths [24].

• Similarly, Vision-based HAR applications describe activities and their information captured

by a single or more than one camera device, statically placed in the environment [25].
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Figure 2.1: Research Taxonomy - Semantic Imputation along with other Data Imputation Methods
and approaches.
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We aim to perform semantic imputations to increase the accuracy of HAR using unobtrusive

data obtained from public repositories. However, for vision-based HAR, we use thermal sensor to

detect and track multioccupant whereas their missing locations are predicted using Kalman Filter.

2.3 Overview of Semantic Imputation

In many real-world HAR domains, the collected datasets are usually incomplete, containing miss-

ing attributes and their values such as UCamI [1], Opportunity [26], and UCI-ADL [27] public

datasets. Many techniques have proposed to process them and recognize activities. By directly

using them with missing states for recognizing activities can have a significant impact on final

conclusions drawn from them [28]. Consequently, data quality has become an important feature

before applying any technique in obtaining decisions. Therefore missing value recovery for the

datasets with different distributions becomes an important preprocessing step [29, 30].

However, to properly identify the categories of the data to be classified, it is essentially a

basic requirement to understand the nature of missing data and their treatment mechanism [31].

Researchers have studied such data loss due to missingness and proposed numerous techniques to

deal with missing values based on the losses. These can be categorized as: (1) missing completely

at random (MCAR); (2) missing at random (MAR); and (3) missing not at random (MNAR).

In MCAR, the missing data occurs completely at random with having no relationship amongst

other data point missing or observed. In MAR, the missing values have no relationship with other

missing data points, however, does relate to observed data points. Lastly, the MNAR category

does refer to such missing data points, which are not random and can be dealt with minimum bias

using MAR mechanism [32]. Generally, most widely used term for missing value replacement is

"data imputation", which refers to the process of replacing the missing values of attributes within a

given incomplete dataset with their potential or actual values according to a specific strategy [33].

A comprehensive survey provides an overview of the challenges, opportunities and approaches

for using machine learning and Semantic Web to cover aspects related to scalability, contradicting

and missing data [34].

Missing values are treated with unconditional mean imputation or median imputation where

data complexities are not challenging. However, for time-series characterized data univariate time-
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series imputation bridges data together by filling missing gaps using last observation carried for-

ward (LOCF). The challenges where predictor variables relies on observable variables for missing

value identification, multivariate time-series imputation is performed [35]. As this thesis deals

with HAR public datasets, which is time-series so a different strategy needs to be explored to

impute missing real-time monitoring data. Any of the missing sensor states may affect any HAR

statistics resulting into some serious anomaly for human behaviour. Curley et al. [5] demonstrated

with different techniques of data imputation while offering several rationale in order to prove the

impact of different remedies. They suggested list-wise deletion, single imputation and multiple

imputation methods to deal with MCAR, MAR, MNAR classification. Most recently Liu et al. [28]

proved that combining suitable data imputation with feature selection method is a better choice to

deal with any incomplete and high-dimensional data resulting in useful results.

In an IoT environment, however, Kim et al. [36] proposed seamless and effective integration

of machine learning and semantic technology to compensate each other for data imputation and

its analysis. Nishihara et al. [37] highlighted latency and high throughput as the most important

requirements for emerging machine learning applications, which keep on evolving using dynamic

data-flow parallelism. Moran et al. [38] also illustrated comprehensive, highly inter-operable, re-

producible and exchangeable classification methodology for ontology-based knowledge manage-

ment and machine learning approaches using spatial data sources. Danylenko et al. also provided

sufficient evidence towards use of different learning strategies for improving the decision accu-

racy [39]. The data from a multi-user environment, while dealing with missingness in real-time

for the recognition of HAR is extremely challenging. Such data may also suffers delay and data

loss without no mechanism of retransmission for sensors. Therefore, to meet HAR QoS, there

is dire need to strengthen real-time applications by addressing the missing values and overcome

unnecessary accuracy issues. We discuss various data imputation techniques in detail as presented

in the Figure 2.1.

2.3.1 Case Deletion

A most common approach to deal with data missingness is "do not impute" (DNI) [16]. DNI

includes list-wise data deletion, pairwise deletion, delete columns for MCAR classified data. The
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List-wise Data Deletion method also known as complete-case analysis deletes records that are

MCAR incomplete remaining data remains at large after removal of individual observations. This

suggests, such a method does not work with small scale dataset classified as MAR and MNAR. It

may lead to serious bias and inconsistency by increasing the probability for any of the remaining

observations [32, 40]. On the other hand, Pairwise Data Deletion is a more selective method

which will not delete those records with missing values but it determines the missing information

based on the existing information on a case by case basis. Such method tries to minimize the

data loss even if the data size is small with large samples of missing data [31]. Aforementioned

approaches are naive and easy-to-use. They omit the missing data from the observations but still

not an attractive choice amongst researchers as they may loose the most important information

and leave the remaining data unbalanced [29].

2.3.2 Direct Imputation

The data imputation methods are broadly classified into single imputation and multiple imputation

methods. The former method deals with statistical methods such as mean and mode techniques

whereas the later on deals with the limitation so single imputation methods with the distribution

of possible values. Following sections discuss some of the semantic imputation methods for pre-

processing the data along with their semantics.

Single Imputation

Univariate or single imputation methods deal with replacing a single missing value. They are

further categorized into explicit modelling and implicit modeling-based methods.

• Explicit Modeling: A widely used statistical approach which is considered to be the effi-

cient and simplest one is mean imputation. In which missing values are replaced with the

mean or mode of observed values for any particular variable. This method, however, is not

recommendable though it is easy to use but produces biased results, especially when the

data are not MCAR. A slightly better method named as conditional mean imputation was

proposed to overcome the biassed results, it replaces missing values through the predicted

value using regression model from the observed data. This model depends on the relation-
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ships between observed attributes. This method however, also underestimates variability

thus not recommendable [41].

• Implicit Modeling: Hot deck imputation method is based on similar instances which are re-

placed by missing values. It identifies similar complete cases from the pool of similar cases

and replaces missing values as a complete instance. The similarity is measured between

similar cases and case with missed values in terms of the distance between its covariates.

This approach is better than mean or mode imputation, however, it still introduces some bias

as well as variability underestimation [42]. Cold deck imputation is similar to the hot deck,

but the instances or cases used to fill the missing values are chosen from external sources,

not from the current dataset [43].

Naïve Bayes(NB) algorithm based imputation makes rational decisions using probability

theory under uncertainty. It works with categorical attributes as probability computation

since it can only work within the discrete domains. Such methods assume that the effect

of values for given attributes of a certain class is independent of the values for any other

attribute. NB imputation methods are very sensitive to usefulness and redundancy of some

of the attributes. At the same time, they are more sensitive to outliers and noise, for this

reason, find it challenging to deal with missing values.

Last observation carried forward (LOCF) method is for longitudinal studies in which miss-

ing value is imputed at one-time point with the last observation in the dataset under that

particular variable [31]. There is another approach similar to this is Last observation carried

backward (LOCB) or Next Observation Carried Backward (NOCB). These methods, how-

ever, seem unrealistic for filling in gaps of missing data as they can potentially introduce

bias as well as underestimate variability.

Little and Rubin [44] conclude that the aforementioned missing values substitution and casewise

methods are proven less effective and inferior when compared with other methods a part of multi-

ple imputations.
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Multiple Imputation

Multiple imputation methods are considered to be modern statistical type methods for dealing with

incomplete datasets having missing values. These are further subdivided into machine-based learn-

ing techniques, Deep Learning methods or auto-encoders, knowledge-based models and model-

based estimation. All of these multiple imputation methods involve four important phases: (1)

data imputation; (2) analysis; (3) pooling (4) aggregation. Each of these methods is itemized

below with detailed insights:

• Machine Learning Models (ML): ML methods are modern algorithm underpinned with

computational learning theory and pattern recognition. Such algorithms derive models,

which are built on data for the prediction of missing values. Some of the ML methods

include: Probabilistic Bayesian Model, which learns the probabilities using graphical mod-

els for categorical data. The missing values are identified by employing a recursive method

and a partial augmentation of posterior means [45]; Multiple imputations was also per-

formed through the standard regression methods, logistic regress and regression-based near-

est neighbor hot decking methods [46]; For MAR multiple imputation linear discriminant

analysis (LDA)-based method [47] seems to be a useful technique, however it resulted bet-

ter for the large nature of datasets; Expectation–Maximization (EM) algorithm using the

maximum likelihood (ML) method, an iterative technique, which is widely used to esti-

mate model parameters to approximate the expected probability distribution of numerical

datasets. Random values are selected from the dataset for missing observations to estimate

the second dataset. The iteration process continues until estimates get converged to certain

fixed values [48]; In order to treat MAR, a likelihood-based (EM) method was devised for

the missing response problem. The values were imputed by the kernel regression imputa-

tion at the first place, which was used to construct a complete data using empirical likeli-

hood, both the datasets and processes are handled independently. It was, however, noted

that empirical log-likelihood ratio was distributed as a scaled chi-square variable asymptot-

ically [49], which cannot be utilized for statistical inference; Some of the researchers also

utilized Fuzzy C-Means clustering hybrid approach in combination with a genetic algo-

rithm and support vector regression [50]. Their proposed method optimized the weighting
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factor, cluster size and fuzzy clustering parameters for estimating the missing values with

high-performance results for imputation; Krishna et al. [51] minimized the error function

by using mean squared error between the covariance matrix for a complete dataset versus a

covariance matrix over the dataset include the imputed values. They used Particle Swarm

Optimization (PSO) and calculated the absolute difference between for the determinants of

both covariance matrices; Self-organizing map (SOM) uses the concept of distance object

per one weight along with several other parameters from the incomplete datasets to give

estimates and predict the results. Such estimation methods proved to be reasonable better

and time-saving while performing imputation [52]; Buuren et al. [53] proposed and devel-

oped a software-based method using multivariate imputation by chained equations (MICE)

in order to deal MAR for imputing incomplete multivariate data. In their technique, they

used Fully Conditional Specification (FCS) method to separate each of conditional model

for each of the observed variable; Few of the researchers involved decision tree-based clas-

sifiers to model missing variables through supervised induction [54]. Later on, similarity

such as Euclidean distance, Minkowski distance or their variants were used to deal with

MAR. Such distance measures are used for imputation using K-Nearest Neighbour (KNN)

or Random nearest-neighbour (RKNN) imputation [55]; Similarly a kernel-based method

to find the similar instances with no missing values from the complete data was proposed

to deal with missing values in the target attributes using clustering [56]; Kernel methods

were also proposed to deal with missing values for binary variables even without the data

preprocessing methods by involving sophisticated multiple imputation techniques. These

proposed techniques were supported with logistic regression for model learning [57]; An

ensemble method for bagging and stacking was also proposed to deal with multiple impu-

tations through an integrated approach [58]; Josse et al. [59] proposed a method using Prin-

cipal component analysis (PCA), which provided point estimation of the variables. In their

study, they also assessed the variability caused by missing values for continuous variables.

However, their PCA based framework may be extended to mixed or categorical variables;

Tan et al. [60] also performed PCA to capture the correlation amongst several variables,

which also suggested the tensor patterns for a high volume of data. They proved their
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methodology by using traffic data imputation for PCA and multi-correlations; A Gaussian

Process Regression [61] was also proposed to addressing the missing data imputation issues.

In which a nested Gaussian imputation was suggested in a high-dimensional tensor. These

regression models also handled time-based correlations among several variables to fill in the

missing values by proposing a hierarchical structure.

• Deep Learning Models: Deep Learning Models/Auto-encoders neural network is also pro-

posed as the imputation method to train the auto-encoders for better prediction of missing

values [62]. They used latent space with higher dimension instead of a bottleneck layer

for handling missing data. They trained auto-encoders based on the hypothesis that a com-

plete dataset and missing values can be used to reconstruct missing data using these auto-

encoders. For the reconstruction of missing data, the nearest neighbour rule was applied

with precision quality enhanced through minimizing the reconstruction error. Turabieh et

al. [63] applied Dynamic Layered Recurrent Neural Network (Dynamic L-RNN) to impute

missing data for medical devices involved in the Internet of Medical Things (IoMT). The

authors proved enhanced improvement through missing data recovery for medical cases in

IoT based real application.

• Knowledge-based Models:

Data imputation has been addressed using symbolic methods such as: (1) rule learning and

(2) decision trees (3) Ontology models, which are briefly discussed as under:-

Garcia et al. [16] deployed rule learning-based method also known as "separate-and-

conquer" using covering rule algorithms for missing data imputation. This algorithm

searches the data based on the query supported with the rule, which retrieves some part

of the data or whole instances. Such process separates rule-based similar examples from the

data through an iterative method. It can be a simpler data retrieval or may use the inference

mechanism. In general missing data or incomplete retrieval can be of the nominal or dis-

cretized form. Again the performance of rule learning method is prejudiced by the outliers

and noisy examples. There exists several algorithms using rule learning methods such as

RIPPER, AQ, PART, FURIA, and CN2.



CHAPTER 2. RELATED WORK 23

In addition to the above literature also exists for another similar method "Decision Trees"

(DT) for imputing missing values. DTs comprise of predictive models arranged in hierarchi-

cal shape containing decision constructed through the iterative divide-and-conquer scheme.

This method analyzes and splits the data into homogeneous subgroups using any of the se-

lected independent variables. These homogeneous subgroups are translated into if-then-else

rules with decisions at the leaf nodes. However, DT based missing values identification runs

into the same problems and disadvantages as of rule learning. In literature, some of the well

known DTs are recommended such as C4.5, PUBLIC, CART [16].

Besides symbolic models, other important Knowledge-based models are also used to find

similar instances or tuples using ontologies. To better represent the data, this is modelled

using ontologies, later on, different tuples are retrieved with the variables having a tem-

poral or spatial relationship. These hierarchical models provide a better understanding to

the semantics of the data, which are exploited using structural as well as syntax properties

through deductive algorithms [24]. A comprehensive ontology covering a specific domain

can effectively handle missing or unknown data. In literature ontology-based methods have

been built for biological knowledge, which by using gene ontology can assist the system in

estimating the unknown or missing values in micro-array data [32].

• Kalman filters, an advanced model-based framework, were also involved to estimate the

missing values using an autoregressive integrated moving average (ARIMA) model [64].

The model predicts the missing values or data states based on the previously observed values

or states. These Kalman filter-based techniques are suitable for univariate missing values

handling methods, especially for univariate time-series methods. The performance Kalman

filters were also studied by Hadeed et al. [35] who proved it to be best where this missingness

of the data is low to moderate. It was also suggested that Kalman filters based imputation

yielded exponentially best performance with strong trends and to be considered most viable

for univariate time-series data of missing nature.
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Figure 2.2: Human Activities Recognition Techniques using Obtrusive and Unobtrusive Sensors.
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2.4 Sensing Technologies for Unobtrusive HAR

In this section, we present an up-to-date discussion of the state-of-the-art in activity recognition.

We describe various existing approaches and their underlying sensing technologies. In particular,

we discuss and analyse semantically the impact of missing states for unobtrusive sensors for rec-

ognizing human activities with their collected public datasets. A special emphasis is also placed

on the unobtrusive vision-based thermal sensor for capturing and predicting missing multioccu-

pant states for recognizing their activities. For this, we consider public dataset, as well as, we also

collected HAR dataset using thermal vision sensor under smart-home controlled environment. We

discuss each one of them one-by-one in the following subsections.

2.4.1 Background for Unobtrusive Sensing

A wide variety of applications are underpinned with state of the art Machine Learning (ML) al-

gorithms for recognizing ADLs in smart environments using obtrusive and unobtrusive sensors.

The wearable devices, also called as obtrusive devices, are most commonly engaged by the users

for Activity Recognition (AR), however, such devices may not be practically applicable for long-

term use because of their maintenance cost, battery life, and discomfort caused by continuously

wearing them. This may also lead to the noisy and imprecise state, causing an erroneous classi-

fication and recognition. This study explores how to recognize activities based on the available

sheer amount of discrete and continuous multimodal data produced by obtrusive, in particular with

unobtrusive sensing devices. Above-mentioned factors affect the performance of ML-based AR

from multimodal sensory data sources thus the appropriate solution is required, which can lift the

performance of the ADLs in monitoring applications [65].

Because of the promising features of unobtrusive non-wearable sensing devices to recognize

human pervasive activities using smart-home applications [66], this study gives a brief overview

and usage of human identification technologies categorized namely as, object-based, footstep-

based, body shape-based and gait-based identification technologies. Among all, the first type of

unobtrusive human identification uses a signal pattern of interaction with an object. The second

type of identification strategy uses footstep’s pressure, their patterns, sounds, and vibration to

identify the ADLs around the home. The third category, body shape-based human identification
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Table 2.1: Unobtrusive sensing technologies applied as non-wearable sensor [2, 3]
Object-based
technologies

Footstep-based
identification

Body shape-
based identifi-
cation

Gait-based
Identification

Se
ns

in
g

te
ch

no
lo

gi
es

• Pressure Sensor
• RFID
• Accelerometer

• Sensor switching
•Microphone
• Pressure sensor
• Electromechanical film
• Accelerometer
• Piezoelectric
• Transducers
• Photo-interrupter

• Ultrasonic • Passive infrared
• RF Transceiver
• Electric Potential
Sensor
• Wi-Fi
Transceiver

Fe
at

ur
es

• Object use
pattern
• Object use
acceleration

•Walking Pattern
• Footstep Sound
• Footstep induced vibration
• Centre of pressure trajectory
• Geometric and holistic infor-
mation

• Height
•Width
• Area
• Perimeter
• Radius

• Body Heat Emis-
sion
• Disruption of RF
& Wi-Fi Signals
• Body Electric
Charge Changes

captures an individual’s information based on their body shape, height, and width using an ultra-

sound technology. Lastly, gait-based technologies use passive infrared (PIR) detector and Wi-Fi

PIR to observe the human body heat emission to recognize the individual and ADLs. Some of the

further details and features for the aforementioned technologies are mentioned in Table 2.1.

It appeared very challenging to identify public datasets which cover the unobtrusive HAR in

particular. For this in this section, we describe the nature of available HAR public datasets Dn

with underlying sensing technologies. Throughout the study, these sensing technologies are dif-

ferentiated into two broad categories of unobtrusive and obtrusive activity sensing based on the

wearables and data sources. We, therefore, provide a brief description of both categories using

UCamI [1], Opportunity [26], and UCI-ADL [27] public datasets for their distinct sensing func-

tionalities, signal type, sampling frequencies, and protocols. The UCamI dataset is shared by

the University of Jaén’s Ambient Intelligence (UJAmI) Smart Lab [67]. The UJAmI Smart Lab

measures approximately 25 square meters divided into five regions: entrance, kitchen, workplace,

living room and a bedroom with an integrated bathroom. We also illustrated sensing unobtrusive-

ness by using highly imbalanced Opportunity dataset covering a wide range of realistic daily life

activities. The Opportunity dataset is very complex with around 75% missing values, which has

been widely explored by the research community for HAR [26]. The dataset uses common unob-
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trusive sensing modalities such as a magnetometer, reed switches, proximity infrared, and RFID.

Additionally, it also uses on-body accelerometers or gyroscopes. In addition to the above men-

tioned public datasets, we also tested our proposed methodology over UCI-ADL [27]. It provides

recognition of 22 activities covering functional mobility through obtrusive as well as unobtrusive

monitoring technologies.

2.4.2 Learning Models for Unobtrusive Sensor-based HAR

The use of conventional Machine Learning (ML) for recognizing human movements is well-

documented research in the literature. Most of these ML methods rely on pattern recognition

approaches and use heuristics or hand-crafted features for training HAR models [68, 69]. Re-

searchers have used various approaches for HAR. These presented approaches utilized wearable,

non-wearable, device-free or hybrid sensing devices. The usage of numerous conventional ML al-

gorithms have become an essential part of HAR since long. Some of them include Support Vector

Machine (SVM), Random Forest (RF), k-Nearest Neighbor (KNN), Naive Bayes (NB), Hidden

Markov Model (HMM), and Decision Tree (DT). Most of the HAR methods use supervised learn-

ing, which requires training data for model generation, to be required for labelling new incoming

data. In this study, we consider only those set of HAR, which are mentioned in public datasets

gathered through sensors falling under the category of unobtrusiveness or in the device free envi-

ronment. It includes benchmarks Opportunity [26, 70], UCI-ADL [27], UCamI [67], and Thermal

sensor frames [71] datasets.

The HAR datasets mostly suffer from missing data or most often there exists imbalanced

amongst classes [72]. As some of the classes may include a large number of tuples whereas others

may have fewer ones. The Opportunity dataset too is extremely unbalanced with around 70% of

data containing NULL class [73]. They filled missing values of sensors for 18 classes by using lin-

ear fitting however, it has proved to be less optimality properties than maximum likelihood. Yang

et al. [74] proposed DNNs, built on network architectures in combination with convolutional and

non-recurrent layers to the HAR domain. They used raw signal data for non-hand-crafted feature

extraction and considered NULL class due to its dominance in the Opportunity dataset. Ordóñez

et al. [75] preprocessed sensor data using linear interpolation to fill in the missing values and
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performed interval-based per channel normalization to [0,1]. They evaluated Opportunity dataset

using DeepConvLSTM for gesture recognition and proved performance improvement without the

NULL class as compared to results reported in the study [74].

Iwana et al. [76] demonstrated the effectiveness of their Dynamic Time Warping algorithm

supported by dynamic weight alignment. They evaluated their strategy quantitatively and com-

pared it with baseline methods using the UCI-ADL recognition dataset for 7 classes. In the work,

Salguero et al. [77] proposed the ontology-based data-mining technique by using the class expres-

sion learning (CEL) for ADL recognition. For this, they used UCI-ADL datasets. They converted

the ontological dataset into ontology models before recognition of several activities from different

datasets. The results obtained through the proposed ontology only describe ADLs as sequences

of events, they do not, however, considered any mechanism to deal with the missing sensor states

or data imputation methods. In the methodology proposed by [78], they used temporal UCI-ADL

data mining technique to identify associations and extracted potential relations among different

entities, which were utilized to produce a network of hypothesised causal relations. The class

imbalance and missing sensor states were also highlighted by [79], which lead to inappropriate

results without obtaining optimal results. Razzaq et al. [21] dealt class imbalance and missing

sensor states using the semantic methodology. In their study, they proposed a hybrid approach us-

ing ontology modelling and reasoning to increase ADL accuracy by using dataset [67]. They also

provided a detailed view of the importance of unobtrusive sensing technologies with innumerable

interdisciplinary ADL applications.

Despite conventional ML/DL methodologies, there exit plenty of approaches, which utilize se-

mantic web technologies underpinned with ontologies to enable and facilitate activity recognition.

In the field of pervasive computing, researchers have also used rule-based approaches in which

domain experts make a decision on manually created rules. In such approaches, researchers utilize

the concept of a domain knowledge-driven approaches to activity recognition [80]. For these, they

adopt ontological models as the conceptual backbone covering the life-cycle of activity recogni-

tion in a sensorised smart-home environment. The compelling feature of the proposed approach

is that activity recognition is performed through direct semantic reasoning making extensive use

of semantic descriptions and domain knowledge. In this, thesis we cover various unobtrusive sen-
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sors along with their characteristics for progressive activity recognition at both fine-grained and

coarse-grained levels.

In particular, HAR accuracy has always been a challenge as there always exits missing data

while dealing with real-time or even offline classification. The drawback of both the pattern recog-

nition approaches and the rule-based approaches are overcome by using Deep Learning (DL)

methods. This study also suggests semantic imputation methods using ontology modelling [81,82]

based on HAR public datasets before applying DL methods for recognizing activities. The robust-

ness and accuracy is proved in such cases which are discussed in later sections.

2.4.3 Review of existing Methods for Unobtrusive Vision-based HAR

Vision-based HAR most often involves camera-based sensing facilities for monitoring occupant’s

behavior. Such facilities are usually equipped with camera-based visual modalities to capture im-

ages, camera-based non-visual modalities such as thermal or infrared devices and 3D depth, mul-

tiview or skeletal capturing devices [83]. All of these modalities generate visual data of the form

such as digitized video frames. HAR using these frames, however, is performed by employing

various computer vision approaches and techniques involving several steps such as segmentation,

feature extraction, and occupant detection with their movement tracking by observing their pat-

terns [84]. The importance of such approaches cannot be denied even for the non-visual sensors

such as thermal sensors or infrared equipped sensors. As we are dealing with thermal vision sen-

sors which can be used as a single unit or in multiple combinations for investigating the diversity

of ADLs. These approaches have been studied by several researchers who have published their

outcomes over the years to detect and track multiple people in a smart environment.

Nigam et al. [85] discuss several reasons as to how the detection of human activities is a com-

plicated task using computer vision. They identified various reasons such as variable object shapes,

occlusion, abrupt motion, luminance issues, occlusion, real-time analysis and action recognition.

These issues have been investigated by several researchers and have proved to be an important

area of research. Several indoor personal localization and their recognition techniques using neu-

ral networks have been discussed in a comprehensive survey [86]. In such a work Kawashima [87]

proposed a Deep Learning-based approach using a grid of 16×16 infrared thermal sensor array



CHAPTER 2. RELATED WORK 30

sequence for daily life action recognition. The authors combined CNN structures for feature ex-

traction with long short term memory (LSTM) for obtaining spatio-temporal representation. It is

worth pointing out that significant progress has been made in recognizing ADLs with visual moni-

toring. The information collected is rich and intuitive. Activity recognition, however, suffers from

issues relating to ethics and privacy [88] with these camera gadgets, which are being perceived as

event recording devices. Murakami et al. [89] used 8×8 RGB converted frames of infrared array

sensors for posture classification and residents monitoring while keeping protecting their privacy.

They promised a higher accuracy for posture classification by using Deep Convolution Neural

Network (DCNN). By using low-resolution 4×16 thermal image frames, dynamic changes due

to shape changing effect from the sequence of frames were also studied by Shelke et al. [90] for

classifying indoor activities. They used conventional machine learning classifier and performed a

frame-wise classification. An automatic occupant detection and tracking is challenging and are the

most important elements in most of the computer vision applications. The tasks related to action

recognition for these detected occupants are also widely studied in these applications, for these

numerous tracking algorithms are proposed [91]. These algorithms are broadly categorized into

two main groups: (1) Learning-based; (2) Model-based. Learning-based or feature-based methods

mostly use training frames to extract discriminative features for recognizing gestures or actions.

Model-based methods, however, uses point tracking for deterministic or probabilistic based meth-

ods, kernel tracking-based methods for multiview or template-based methods and silhouette track-

ing using contour matching or shape matching [92]. In point tracking, most of the researchers used

Kalman Filtering algorithm to track point having low-to-moderate computational time, recursive

Bayes filtering for handling occlusion and complex background but higher computational time.

Lastly, multiple hypothesis based point tracking algorithms have also been introduced for tracking

objects. In this thesis, we focused on point point-based tracking methods using Kalman Filtering

algorithm as other methods have high computational cost as well as compromised accuracies.

2.5 Robust Methods for Semantic Imputation

Over the past, several machine learning-based statistical methods have been introduced and em-

ployed for addressing the incompleteness of datasets by approximating the missing attributes and
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their values [93]. An extensive research is available to address missing data issues, the solutions

for imputation are, however, generally categorized as (1) single imputation; (2) Machine-learning

based imputation and (3) multiple imputation methods [41, 93]. In a single or univariate impu-

tation method, a single missing value for each attribute is replaced with imputed one. For this,

various statistical single imputation methods are proposed in the research, which includes mean

and mode method, where missing values are replaced with mean or mode of observable values for

the same variable [94]. For multivariate attributes, the relationship among various attributes is esti-

mated supported by the regression coefficients by using regression-based imputation methods [95].

Another method referred to as hot-deck uses probabilistic information from a similar set of obser-

vations to replace missing data [45]. Finally, an iterative method expectation-maximization with

each step containing expectation for estimating missing values and by likelihood maximization

was also introduced for imputing missing values in the incomplete numerical datasets [96].

Machine learning (ML) based imputation methods are dependent on predictive learning mod-

els, which are built on observed data for estimating the missing values for target attributes. There

exist top six most used ML-based imputation methods such as: (1) clustering; (2) decision trees;

(3) k-Nearest Neighbors (k-NN); (4) Random Forests; (5) Support Vector Machines (SVM); and

(6) Artificial Neural Networks. The cluster analysis technique uses unsupervised learning for

categorizing similar objects in the same clusters. To impute the missing values a distance-based

measure is applied over the missing data and cluster centroids [97]. Decision Tree models the

data into a tree-like structure represented by internal nodes for test attributes and leaf nodes repre-

senting classes whereas each branch represents the outcome of target missing values [98]. About

k-NN, which is a form of supervised learning in which a distance is calculated between observed

values and target missing values [99]. Various distance metrics are used in the literature under k-

NN based imputation, which includes Hamming distance, Euclidean distance, Minkowski distance

or Manhattan distance. On the other, hand Random Forests based imputation identifies important

variables with their masking scores, ensembles the variables and adjust the scores for target miss-

ing values. Support Vector Machines based imputation using learning theory concepts for the

estimation of missing condition attribute values where the data is linearly separable [100, 101].

Furthermore, Artificial Neural Networks provide powerful mathematical models for estimating
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missing values using probabilistic approximation using neuron, layers, activation functions and

weights [102].

In addition to above ML-based methods these, a plethora of extended ML-based imputa-

tions algorithms are also presented and discussed in [16], which include: (1) Imputation with

K-Nearest Neighbor (KNNI): KNNI computes a missing value by taking the average of corre-

sponding numeric entries in the example expression vectors whereas for the nominal values most

common value is taken for imputation [103]. (2) Weighted Imputation with K-Nearest Neighbour

(WKNNI): The WKNNI method selects different distances strategies as in the case of KNN. It uses

weighted mean or frequently repeated value as a similarity measure for missing value imputation

measure [104]. (3) K-means Clustering Imputation (KMI): In KMI, the intra-cluster dissimilarity

is measured by the summation of distances between the objects and the centroid of the cluster they

are assigned to. A cluster centroid represents the mean value of the objects in the cluster [100].

(4) Imputation with Fuzzy K-means Clustering (FKMI): In order to extend the original K-means

clustering method to a fuzzy version FKMI, a membership function is added to describe the de-

gree of missing data to which it this belongs to [105]. Such a FKMI approach provides a better

description of clusters where they are overlapped. (5) Event Covering (EC): EC a three-decade old

algorithm, works based on a mixed-mode probability model, which is approximated by a discrete

one. Such a method does not require scale normalization or the order of discrete values [106].

(6) Singular Value Decomposition Imputation (SVDI): SVDI based imputation utilizes a set of

mutually orthogonal expression patterns that are identical to principal components of data values

named as eigenvalues and these are linearly combined approximate values for all the attributes

in a dataset. The most significant eigenvalue is identified through sorting them and finding the

corresponding ones [101]. (7) Local Least Squares Imputation (LLSI): LLSI represents missing

values with target gene which is a linear combination of similar genes. This method uses only

similar genes by computing local least square similarity measure in which L2-norm is used lead

by regression and estimation [107].

Lastly, the third category to impute the missing data involves multiple imputation method

is again a statistical-based technique originally proposed by Rubin [108]. It is mainly aimed at

solving the limitations of the previous two categories i.e. single imputation method and machine



CHAPTER 2. RELATED WORK 33

learning-based method especially the former one. In multiple imputation methods, each missing

value is treated with multiple imputations, which can be two or more acceptable values repre-

senting the distribution of possibilities [109]. Thus, multiple imputation method promises better

results in terms of modelling uncertainty in three steps: (1) imputation of missing values, (2) sta-

tistical analysis on imputed datasets, and (3) pooling of results across multiple imputed datasets.

Imputation of missing values may involve specific statistical machine learning technique such as

single or multiple regression models like linear, poison or logistic as described in [110]. These un-

derlying techniques are effective, however, are complex, higher computational cost and large data

storages for analysis and pooling for multiple imputations as it involves the construction of N num-

ber of imputed datasets and performs multiple substitutions to obtain a single final dataset [111].

Another important aspect has to be considered while performing multiple imputations is selection

of N as how many imputations have to be performed, which is usually take as 3 or 5 [112]. It has

been proven by Liu et al. [113] that imputation provides robustness to the model learning, which

leads to the increased performance for simple and complex scenarios.

All of the above-mentioned techniques have their own merits and demerits. Semantic impu-

tation based techniques, however, utilize the prior knowledge of sensors and sensory data before

applying them for some applications. Building semantic knowledge from the human activity data

requires domain knowledge, and applying it further for identifying missing values for semantic

imputation is still a challenging problem and requires further studies [114].

Regardless of the method used, imputation is considered both an essential and sensitive step

of data preprocessing [16], especially for HAR and ADLs. This clearly affects the performance of

the HAR and ADLs in a smart-home environment further explored by data mining task [44].

2.5.1 Review of existing Sensor-based Semantic Imputation Methods

Unobtrusive sensing enables continuous monitoring of activities and physiological patterns dur-

ing the daily life of the subject. These wearables most often involve binary sensors (BinSens),

PIR sensors, and pressure sensors embedded within smart objects or the ambient environment.

BinSens generate an event stream comprising of binary values, working on the principles of the

Z-Wave protocol. Such protocols are implemented through some unobtrusive wireless magnetic
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sensors. This can be explained through the Prepare breakfast example in Figure 2.3. For ’Pantry’,

’Refrigerator’, and ’Microwave’ objects, Open state means magnets are detached and they are in

use, whereas Close state shows they are not in use. The inhabitant’s movements are recorded at a

sample rate of 5 Hz, using the ZigBee protocol implemented in ’PIR sensors’ such as the ’Sensor

Kitchen Movement’ [115]. It also produces binary values with Movement or No Movement. The

presence of an inhabitant on the ’Sofa’, ’Chair’, and ’Bed’ objects are collected via the Z-Wave

sensing protocol, implemented through the ’Textile Layer Sensors’, which produce binary values

Present or Not present. Similarly, a continuous stream of data are also observed for unobtrusive

spatial data gathered through the suite of capacitive sensors installed underneath the floor.

The dataset generated through the BinSens is of a challenging nature as the duration of the

generated stream may be instantaneous, lasting for a few seconds or may continue for hours. As

shown in Figure 2.3, filling the gaps between two states for BinSens is of a challenging nature

since every BinSens has a different operation nature and state transition time depending on the ac-

tivities performed. The proximity data from the Bluetooth Low Energy (BLE) beacons is collected

through an android application installed on the smart-watch at a sample rate of 0.25Hz [115]. BLE

beacons are measured through RSSI. The value of the RSSI is higher if there is the smaller dis-

tance between an object and the smart-watch and vice versa. BLE beacons are used for ’Food

Cupboard’, ’Fridge’, ’Pot Drawer’, etc., for the Prepare breakfast activity example in Figure 2.3.

Ambulatory motion is represented by Acceleration data, which is again gathered through the an-

droid application installed on the smart-watch. The 3D acceleration data are collected in a con-

tinuous nature using a sampling frequency of 50Hz. Such acceleration data [26] is also measured

through body-worn sensors, object sensors and ambient sensors, which measure 3D acceleration

using inertial measurement units, 3D acceleration with 2D rate of turn and 3D acceleration with

multiple switches, respectively.

2.5.2 Review of existing Vision-based Imputation Methods

The foundation of most of the visual tracking systems is built on generally three functional mod-

els [116]: (1) Appearance model, it characterizes and distinguishes between objects and non-

objects; (2) motion model, which detects object’s motion trail and predicts future location; (3) and
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searching strategy to find the object in the video streams. Many methods have been proposed in

the literature to deal with appearance and motion models. An online model learning algorithm,

however, is required to deal with dynamic appearances and trajectories. To cope with the afore-

mentioned challenges several strategies have been proposed depending on features required to

build appearance models. These features are also necessary to address the searching strategies as

well which also play an important role in searching for missing objects. Kalman Filter [117] has

proved to be an optimal tracker for practical applications by ensuring a good compromise between

computational complexity and tracking performance. It uses a series of inaccurate and noisy data

observed over time to estimate unknown variables by ensuring increased accuracy [118]. For each

input tracklet, such noise is alleviated from inaccurate detections by refining the positions and by

estimating the sizes and velocities of its detection responses of the shape bounding boxes [119].

For a higher accuracy and minimal computation cost, the bounding boxes are considered as small

as possible by the Kalman filter [120]. In literature, there are numerous real-world applications,

which show that the Kalman filter allows a suitable treatment of incomplete and noisy data [121].

Especially in frame-based detection and prediction Kalman filter is used to predict the location of

an object in the current frame from the previous one. The system, however, also compares the

previously detected position with the newly predicted one [122]. Many researchers also focused

on the spatial features of multiple objects required for their tracking [123]. However, prediction

in such cases become more challenging. Some of the traditional methods developed earlier use

frame-by-frame for making the prediction of objects by involving multiple hypothesis tracking

(MHT). Some of the researchers also employed joint probability data association filter (JPDAF)

in which a single state is generated for prediction purpose using relationship among individual

measurement and likelihood associations. However, literature shows both MHT and JPDAF are

computationally expensive for identifying missing objects during detection and tracking.

Despite all the efforts, however, such methods still consider two problems such as target ini-

tialization and how to deal with missed targets while tracking. Most recently Dimitrievski et

al. [124] proposed vision-based imputation methods to deal with the missing data on the detector

as well as tracking side. They adapted imputation theory to recover from lost information through

lower-level likelihood information in cases of missing detections. They proposed multiple particle
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filters for handing missing detections and estimated the missing detection information by using

imputation proposal function. In this thesis, we are intended to deal with the missed targets and

predict the new location as to perform vision-based imputation.

2.6 Summary of literature

2.6.1 Complex HAR literature

In the past few decades, a rapid rise in the advancement of pervasive computing has been

observed through gathering Activities of Daily Livings (ADLs). This is generally carried out

in a controlled environment equipped with the inexpensive wireless sensors. A wide variety of

applications are underpinned with state of the art machine learning algorithms for recognizing

ADLs in smart environments. In such environments, the real-world streaming dataset is almost of

the same content as near-duplicates [125]. This leads to the noisy and imprecise state, causing an

erroneous classification and recognition. On the other hand, it also becomes infeasible to perform

comprehensive data cleaning step before the actual classification process. This study explores how

to recognize activities based on the available sheer amount of discrete and continuous multimodal

data. In order to recognize the activities, time-based sub-window re-sampling techniques were

adapted, as they keep a partial order in the multi-modal sensor data stream for recognizing each

individual activity [126, 127]. The sampling techniques [128] have widely been used to handle

approximate results by accommodating the growing data size. These samples form a basis for

statistical inference about the contents of the multimodal data streams [129]. As relatively little

is currently known about sampling from the time-based window [130] and is still a nontrivial

problem [131]. It is pertinent to mention that sampling becomes more challenging if the sensory

data is of a highly dynamic nature [132] for the activity recognition models. Moreover, high data

arrival rate can also suppress the robustness of such models as near-duplicate speeding data may

get multiple re-asserts [133]. However, some research studies also suggest a compromise be made

between efficient sampling rates for such dynamic nature [130]. As above mentioned factors

affect the performance of Machine-Learned (ML) based activity recognition from multimodal

sensory data sources thus appropriate aggregation strategy can lift the performance of the
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ADLs monitoring applications [65]. The selected aggregation strategy for data-level fusion

determines the way in which multimodal data reach the fusion node [23]. At the fusion node,

different ADLs can be best recognized by selecting the appropriate fusion strategy with variable

window lengths [24, 134, 135]. Current tendencies prove the acceptance of high attention by

sensing modalities for improving the recognition of ADLs performance and overall application

robustness [136, 137].

2.6.2 Unobtrusive Sensing literature

Multi-object Tracking (MOT) in CV domain has been studied for decades and has attracted a lot of

research attention. It is, however, still far from solved regarding HAR [138]. Many solutions exist

for HAR in a controlled environment. These solutions mostly involve the deployment of numerous

wearable and pervasive sensors [139], which can lead to increased cost, privacy concerns and more

often an inconvenience. To alleviate these challenges, attention of the research community has

directed to low-cost unobtrusive sensors [140].

TVS are an excellent candidate for pervasive sensing due to their inexpensive nature, porta-

bility, limited maintenance requirement and lower privacy issues compared to traditional cameras.

Hevesi et al. [141] have illustrated that such a sensing modality can be deployed for indoor HAR

and monitoring of sedentary behavior of a single occupant in an office environment. Solutions

based on TVS mostly require CV based approaches for locating moving objects by identifying

them as a region of interest (ROI) in a frame sequence. Detection of an ROI is deemed as the

first step in most CV-based applications [142]. It may involve various techniques such as: (1)

thresholding, which yields low accuracy and is of lesser use in current applications [143]; (2)

multi-resolution processing which faces challenges for detecting objects during congestion [144];

(3) edge detection which has challenges in deriving an ROI where the shape of the object is highly

dynamic; (4) inter-frame differencing which uses consecutive frames for detecting an ROI but can

only be considered for a sequence of shorter duration [145]; (5) an optical flow-based detection

which requires a large number of frames resulting in poor performance; (6) background subtrac-

tion which extracts objects not belonging to the background, however, this technique requires a
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static background as an initialization.

2.6.3 Semantic Imputation literature

While most of the attention and research focus has been given to the development of machine

learning (ML) imputation methods, they do not handle the semantics of data well at all. Besides

ML algorithms statistical methods have also been proposed to deal with the missing data. In

contrast to statistical methods, the ML algorithms perform classification for missing values using

the trained model, which is built on the complete data. Several algorithms were built such as rule-

based methods, probabilistic models, or decision trees, however, their underlying methodology

remained the same [146]. Data imputation for HAR is also not widely studied research topic,

which we aim in this study by keeping the semantics of data after imputation.

Recognition of ADLs has been undertaken across a wide variety of applications including

cooking, physical activity, personal hygiene, and social contexts. Generally, solutions for rec-

ognizing ADLs are underpinned with rule-based or knowledge-driven supported by conventional

Machine Learning (ML) algorithms [74, 147]. In such environments, the embedded or wireless

sensors generate high volumes of streaming data [134], which in a real-world setting can contain

huge amounts of missing values or duplicate values [125]. Such noisy and imprecise data may lead

to one of the major causes of an erroneous classification or imprecise recognition. Conversely,

several challenges also exist while coping with missing values hence an efficient mechanism for

imputation of the sensory data are thus required. Issues in missing data become even more dif-

ficult when considering multimodal sensor data to recognize real-time complex ADLs. In this

case, some of the sensors may generate continuous streams of data whilst others generate discrete

streams [7].

Several statistical-based approaches are reported in the literature to deal with missing values.

The majority of these propose data imputation solutions, the nature of which can vary depending

on the size of the actual data and the number of missing values [148]. Most of them, however,

use model-based imputation algorithms i.e., likelihood-based or logistic regression to encounter

the missing values. The impact of imputation is determined by the classification performance,

which may lead to biased parameter estimates, as most of the ML classifiers deal with the missing
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information implicitly. For this reason, complications whilst handling missing sensor states is

still considered to be a non-trivial problem [146]. An appropriate strategy is therefore needed to

improve the quality of data imputation with minimal computational efforts. Current approaches

must also address data imputation in multimodal sensor streams, which not only improves the

recognition performance but also increases overall robustness of the applications [149, 150].

Despite the gain in statistical power, more recently, ontology-based modeling and rep-

resentation techniques have been introduced [151]. These ontological models can discover,

capture, encode rich domain knowledge, monitor patterns of ADLs, and provide heuris-

tics in a machine-processable way [152, 153]. Ontologies represent rich structured hierar-

chical vocabularies and can be used to explain the relations amongst concepts or classes.

The coded knowledge is made accessible and reusable by separating sub-structural ax-

ioms, rules and conjunctions among the concepts [154]. In addition to separation logic,

use of a query language, SPARQL also provides support for disengaging these seman-

tics and assertions for interpreting any rule-based complex activities [155]. In work by

Amador et al. [156], the authors used SPARQL for retrieving class entities and their types,

which were later transformed into vector form before using deep learning approaches. Similarly,

Socher et al. [157] have bridged neural networks with an ontological knowledge-base for the iden-

tification of additional facts. Only a limited amount of work, however, has been undertaken to

account for semantic imputation using ontological models and SPARQL [158].

2.6.4 Review of existing methods for Vision-based HAR

Regarding MOT various techniques [159] have also been proposed by the research community.

These techniques focus on addressing common challenges such as frequent occlusions, identical

appearances, track management and interaction among objects. No single approach currently ex-

ists which can address all of these challenges. MOT in any visual tracking system usually involves

three functional models [116]: (1) appearance model, which describes the object and distinguishes

it from the non-objects; (2) motion model which characterizes the current and predicts the future

states of an object by tracking their trajectories; (3) searching strategy which helps to identify and

match an object based on the appearance model in a frame sequence.



CHAPTER 2. RELATED WORK 41

Motion models have gained significant attention for object state estimation. They operate by

producing accurate motion affinity models in a linear motion space, which can be used to predict

object position [160]. Thus, it reduces the search space by capturing the dynamic behavior of

the object. To solve the linear tracking problem, where continuity of moving objects is not abrupt,

Kalman filtering (KF) is often used [161]. This approach can track moving objects using their cen-

ter of gravity [162]. KF is a linear state-space motion model proved to be an optimal tracker suit-

able for practical applications. It promises a good compromise between computational complexity

and performance for object tracking by utilizing a point-based approach in learning statistical fea-

tures [163]. It uses identified features and uncertainty information to estimate different states of

an object through the successive frames. KF may, however, experience object drifting due to the

loss of an object’s appearance information in a frame sequence. The object drifting complexities

require efficient object refinement schemes to analyze object motion properties leading to proper

data association [164]. Yilmaz et al. [160] addressed some of the issues and complexities related

to data associations through a joint solution for state estimation. Choi et al. [165] formulated the

problem of multi-occupancy and resolved it through multiple target tracking. They merged the

problems of HAR and tracking into a single probabilistic graphical model for tracking individual

actions. Similarly, an adaptive framework was also proposed by Shen et al. [166] to identify the

correct state of the targets. They suggested the use of an adaptive detection algorithm for MOT

task to refine the detection targets and minimize the detection errors. In order to classify Activities

of Daily Living (ADLs), it has been observed that CNN have shown superior performance over

the traditional Machine Learning (ML) approaches such as Support Vector Machines [167] and

feed-forward neural networks [168]. The visual object recognition tasks [169] can be performed

over the raw low-resolution TVS frames using CNN, which is easier to train by adjusting a few

parameters and inter-layer connections. It extracts meaningful features without requiring domain

knowledge and with minimum preprocessing over a stacked sequence of frames [170]. The CNN

model has the capability to extract multiple motion features encoded in the adjacent TVS frames

for automatic classification of ADLs [171].

The current work is closely related to [9] in which the authors proposed a system for indoor

player tracking captured through the thermal camera at a sports arena and pedestrian tracking



CHAPTER 2. RELATED WORK 42

in a courtyard. Ray et al. [172] proposed a detection algorithm, which does not depend on any

prior background knowledge for object detection and also does not require initialization. Similarly,

Leira et al. [173] considered the problem of small unmanned aerial vehicles equipped with thermal

cameras for real-time target detection and tracking at sea using the KF based technique. Tiwari et

al. [92] highlighted the research gaps for video-based HAR. They suggested designing an approach

to improve the robustness of the detection and tracking algorithms by increasing the number of

occupants, which can be tracked over a sequence.

The purpose of this study is to propose a framework for moving object detection, tracking and

classification of ADLs with increased performance using low-resolution thermal video frames.

To achieve this goal, an implementation using a KF was devised by building a robust object ap-

pearance model with morphological feature refinements [174]. It also involves the Hungarian

algorithm for data association per frame [166]. Additionally, this study evaluates the robustness

of the integrated framework to detect and track ADLs of the users using low-resolution TVS. For

this, the solution was tested using a comprehensive experimental analysis drawing quantitative

and qualitative comparisons. Robust tracking systems, such as [175], mostly involve an appear-

ance and motion model to track the candidate states of the target. Computational complexity,

however, increases proportionally with the increase in the number of targets to be tracked [176].

Therefore, joint optimization is essential for MOT. Most MOT research focuses on tracking-by-

detection methods, however, an extension to it, by classifying the activities may result in boosting

the overall effectiveness of these methods.



Chapter 3
Multi-strategy Data Imputation

3.1 SemImput Methodology

In this Chapter, we demonstrate the proposed methodology for Sensor-based semantic imputation,

an overall functional architecture and a workflow in Section 3.1.1. An ontology model to represent

the activities is presented in Section 3.1.2 and a detail of specially designed SPARQL queries for

semantic segmentation in Section 3.1.6. Ontology-based complex activities identification and

conjunction separation for semantic data expansion is explained in Section 3.1.7. An algorithm to

perform semantic imputation is then described in Section 3.1.8. Lastly, the classification method

describing HAR using DL based ANNs is presented.

3.1.1 High-Level Overview of the Multi-strategy Data Imputation Method

The presented work describes a layered Semantic-based Imputation (SemImput) method, which

supports an innovative means to synchronize, segment, and complete the missing sensor data.

This is achieved by automatically recognizing the indoor activities within the smart environment.

The architecture depicted in Figure 3.1 comprises of (a) Data Sensing and Representation Layer

designed to capture data; (b) the Semantic Segmentation Layer segments the data based on the

timestamps for over 1-second; (c) the Semantic Expansion Layer segregates the concurrent ac-

tivities represented by separate features into a sensor event matrix; (d) the Semantic Imputation

Layer, responsible to fill the missing data, sensor states, which are of periodic nature and provides

continuity to the data by using the proposed strategies; (e) the Semantic Vectorization receives the

filled sensor event matrix and generates vector sets; (f) and finally the Classification Layer, which

uses a neural network to classify the augmented Semantic Vectors for evaluation purposes.

43
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Figure 3.1: A detailed view of SemImput framework.
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3.1.2 Data Sensing and Representation

The Data Sensing and Representation layer utilizes the sensor streams which are simulated over

a dynamic sliding window. We used ontological constructs, which are derived through the data-

driven techniques for representing sequential and parallel activities. This layer is encapsulated by

the newly modeled set of OWL2 Semantic Imputation Ontologies (SemImputOnt) to map sensory

data. It models sensor streams, identifies patterns, and discovers the overlapping temporal relations

in them. It supports generality in terms of data semantization [177], offers more expressiveness,

and helps in decoupling the concurrent fragments of sensor data rather than using non-semantic

models. It not only provides a basic model for representing the atomic and complex ADLs but

also supports the expansion of dataset instances through the SPARQL queries.

3.1.3 Dataset Description

The multimodal dataset comprises of data collected over the period of 10 days. This dataset

preserved different sensor functionalities: signal type varying from continuous to discrete; sam-

pling frequency high, low and very low; sensor placement of the type wearable and non-wearable

categories. However, the information related to the underlying sensor technologies and dataset

collected is briefly discussed in the following subsections:-

Binary sensor event streams

In this challenge, an event stream of 30 binary sensors (BinSens) is shared by UJAmI Smart Lab

comprising of binary values along with the timestamps. These BinSens are the wireless magnetic

sensor that works on the principles of Z-Wave protocol. For example ’Medication Box’ in use is

considered ’Open’ and not in use will be ’Close’. The inhabitant movement is monitored using the

’PIR sensors’ working with underlying ZigBee protocol with the sample rate of 5Hz. The binary

values, in this case, are represented by ’Movement’ or ’No movement’. The sofas, chairs, and

beds are equipped with the textile layer to observe the inhabitant pressure and transmits ’Present’

or ’No present’ binary values using the Z-Wave protocol. These BinSens gather information about

the interaction with objects or sensors with a set of the associated activities. This interaction is

relatively associated with the sparse BinSens streams, as it is defined by rapid firing for an event.
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While on the other hand, a pressure sensor stream can even last for minutes to hours, so this makes

it challenging for handling the diversified streams.

Spatial data

UJAmI Smart Lab has shared the SensFloor dataset generated by the suite of capacitance sensors

beneath the floor. The SensFloor dataset has the description of eight sensor fields identified with

an individual ID. The challenging part is that spatial data information is generated with different

sample rate.

Proximity data and Bluetooth beacons

The Proximity data is provided for a set of 15 BLE beacons at 0.25Hz sample rate by an android

application installed on smart-watch. The BLE beacons are generated for the objects like TV

controller, fridge, Laundry basket etc.

Acceleration data

The physical activity frequency, ambulatory movements, and motion intensity are captured using

an acceleration data stream which is gathered by the android application installed on smart-watch

worn by the inhabitant. The accelerometer dataset is continuously generated at the 50Hz sampling

rate in the tri-orthogonal directions such as x, y, and z-axis.

3.1.4 UCAmI Cup Challenge Design

The 1st UCAmI Cup studies the problem of recognizing activities based on the shared UJAmI

Smart Lab dataset for 24 activities in the smart-home environment as mentioned in Table 3.1. The

total samples for each individual activity which was performed following several routines over

the period of 7 days is plotted in Figure 3.2. Reflective of the real-world nature of the training

dataset, the imbalance in the number of data samples for the different activities can be observed

by observing the total duration for each individual performed activities. However, the challenging

task is to map the pre-segmented training and test dataset from different sensor modalities having

different sample rate. The challenge involves handling of missing values, identification mechanism
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to fill in the gaps since some sensors generate continuous streams while others discrete. So there

is a need to devise an algorithm to handle more realistic and complex activity classification tasks.
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Main Tasks

The main aim of this work was recognizing activities based on the test dataset, evaluating the

results and identifying the challenges associated with the UJAmI Smart Lab dataset. The training

dataset has been automatically cleaned and preprocessed for activity classification, which is further

discussed in subsequent sections. The overall UJAmI Smart Lab dataset is categorised as follows:

• Labelled training dataset with seven days of recordings that contained 169 instances followed

by different daily life routines.

• Unlabelled test dataset with three days of recordings that contained 77 instances obtained by

following a set of daily life routines.

3.1.5 SemImputOnt Modeling

As shown in Figure 3.1, the activity recognition framework is a sequence of data alignment, pre-

processing, application of machine learning techniques, training of model based on the training

dataset and classifying the test data.

Data alignment & mapping

UJAmI Smart Lab dataset corpus contains independently gathered data from multimodal sensors.

For the main task, each of the sensor data was reordered into a set of 1-second window slot for

the time-stamp coherence. In order to generate time-stamp, the Activity[n] (where n represents

the number of activities performed for each time slot) was segmented based on DateBegin and

DateEnd for over 1-second time window so that the rest of Sensors, Floor, Proximity and Acceler-

ation dataset can be mapped based on timestamps. A sliding window segmentation technique [178]

with the step size of 1-second was chosen in order to keep the maximum number of instances [74]

and better performance [179]. The complete work-flow with details of the whole process of data

alignment and mapping is presented in the proposed Algorithm 1.

Data preprocessing

The accelerometer data consisted of instances at the rate of 50Hz, which was preprocessed to filter

out the unwanted noise and avoid the computational complexities. These were re-sampled by
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Algorithm 1 Data alignment and re-sampling algorithm for UJAmI Smart Lab dataset (D)
Input: Dseq . Sequence (Activity Act, Sensor Sen, Floor Flo, Proximity Prox, Acceleration

Acc)
Output: Dseg . Segmented 1-sec re-sampled data tuples.

1: procedure DATAPROCESSING
2: function UpdateT imestamps(Activity_FilesAct)
3: for all Acti to Actn do
4: Load Activity_FileActi
5: Read Activity_FileActi
6: while DateBegin(Acti) < DateEnd(Acti), Step do
7: Generate timestamp tuple
8: Add Columntimestamp1sec
9: Set Step = 1sec

10: end while
11: ActivityF ileA1second← ActivityF ileAi
12: Append Activity_FileA_1_second
13: end for
14: Return Activity_FileA_1_second
15: end function
16: function ReSample(Acceleration_FilesAcc, Step)
17: for all Acci to Accn do
18: Load Acceleration_File_Acci
19: Read Acceleration_File_Acci
20: while NotEOF do
21: Tuple(TSj , Xj , Yj , Zj)1sec ← (TSi,

1
n

∑n
i=1 xi,

1
n

∑n
i=1 yi,

1
n

∑n
i=1 zi)

22: Set Step = 1sec
23: end while
24: AccelerationF ileAcc_1_second← AccelerationF ileAcci
25: end for
26: Append Acceleration_File_Acc_1_second
27: end function
28: function ReSample(Floor_FilesF lo,DeviceID,mean, Step)
29: for all Floi to Flon do
30: Load Floor_File_Floi
31: Read Floor_File_Floi
32: while NotEOF do
33: Tuple(TSj , DeviceID,C1, , , C8)1sec
34: ← (TSi, DeviceIDi,

1
n

∑n
i=1 c1, , ,

1
n

∑n
i=1 c8)

35: Set Step = 1sec
36: end while
37: FloorF ileF lo_1_second← Floor_File_Floi
38: end for
39: Append FloorF ileF lo_1_second
40: end function
41: Load Files ActivityAct;SensorSen;FloorF lo;ProximityProx;AccelerationAcc
42: Read Files ActivityAct;SensorSen;FloorF lo;ProximityProx;AccelerationAcc
43: for all TSAi to TSAn do
44: if TSAct = TSSen = TSFlo = TSProx = TSAcc then
45: for each tuple in Act: Tuple_V ector ← Act ./ Sen ./ F lo ./ Prox ./ Acc
46: end if
47: Append MainTable← Tuple_V ector
48: end for
49: Dseg ←MY SQL(MainTable)
50: end procedure
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applying the commonly used time-domain statistical features, such as a mean filter for each of x,

y, and z tri-orthogonal values over a duration of 1-second. After observing the Floor data, which

was also generated at a variable rate, was re-sampled within the duration of a 1-second window. In

this case, the method considered was to take the mean for floor capacitances and also at the same

time, to keep the characteristics intact for individual data generating sensing device, identified by

the device ID.

Taxonomy Construction

We followed and utilized the data-driven techniques to model sensor streams for identifying com-

plex concurrent sensor temporal state patterns. These state patterns become the basis for the

parallel and interleaved ADLs, which are of static and dynamic nature as mentioned in Table 3.1.

An ontology engineer utilizes the complete knowledge of involved sensors and the nature of the

data produced by them. In addition, the core vocabulary required to model and design the SemIm-

putOnt is obtained through the temporal patterns of sensor stream data, describing the complex

ADL’s main class definitions. The descendants of these main classes, however, have been de-

scribed to model each sensor object, which generates discrete or continuous sensory data. These

primitive classes are related to ADLs using "SensorStateObject" properties. These object proper-

ties such as hasBinarySensorObject shows the relationship between the ADL and the core sensor

object defining its state. Again, the state is linked by a property hasBinarySensorState with Sen-

sorStateObjects. Similarly, the other obtrusive sensor objects have the properties hasAccelerome-

ter, hasBLESensor with the hasRSSI data property. All these sensor objects define the ADL with

open intervals without any prior knowledge of Start-time or End-time [4]. The temporal relations

for each sensor object are obtained using object properties hasStartTime and hasEndTime.

How comprehensive SemImputOnt is at representing disjoint ADLs can be visualized and ex-

plained through an example of the activity Breakfast modeled in Figure 3.4. In this example, an

ADL Breakfast is represented as a class. The ADL Breakfast is a descendant of the Activities class,

defined as being an equivalent class relating to the instances of BinarySensorObject, BinarySen-

sorState, Accelerometer, Devices, FloorCapacitance, BLESensors, and DaySession. This means

that, to be a member of the defined class Breakfast, an instance of the Activities class must have a
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property of type hasBinarySensorObject, which relates to an instance of the SensorKitchenMove-

ment class, and this property can only take as value an instance of the SensorKitchenMovement

class. The instance of the Activities class must also have a property of type hasBinarySensorState,

which relates to an instance of the Movement class, or the NoMovement class, and this property

can only take as value an instance of one of them. The instance of the Activities class must also

have a property of type hasAccelerometer, which relates to an instance of the x class, y class, and

z class. This property must only relate to the instances of these three classes. The instance of

the Activities class must also have a property of type hasDevice, which relates to an instance of

the Device1 class, and Device2 class. This property must only relate to the instances of these two

classes. The instance of the Activities class must also have a property of type hasFloorCapaci-

tance, which relates to an instance of the C1 class, C2 class, C3 class, C4 class, C5 class, C6 class,

C7 class, and C8 class. This property must only relate to the instances of these seven classes. The

instance of the Activities class must also have a property of type hasBLESensor, which relate to an

instance of the Tap class, FoodCupboard class, Fridge class, and WaterBottle class for this exam-

ple. This property must only relate to the instances of these four classes and every class must also

have a property hasRSSI, which relates to the instance of RSSI class. Moreover, the instance of

the Activities class must also have a property of type hasDaySession, which relates to an instance

of the Morning class and only to an instance of the Morning class. Thus, if an instance of the

Activities class fulfills the seven existential restrictions on the properties hasBinarySensorObject,

hasBinarySensorState, hasAccelerometer, hasDevice, hasFloorCapacitance, hasBLESensor, and

hasDaySession, the instance will be inferred as being a member of the Breakfast class.
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Figure 3.4: SemImputOnt: Class hierarchy with a definition axiom for the activity Breakfast.
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Table 3.1: A list of activities, locations, and dependent sensor objects identified from UCamI
dataset utilized for SemImputOnt constructs.

Type ID Activity Name Location Activity Dependencies Sensors’ Objects

Static Act01 Take medication Kitchen Water bottle, MedicationBox

Dynamic Act02 Prepare breakfast Kitchen, Dining room
Motion Sensor Bedroom, Sensor Kitchen Movement,
Refrigerator, Kettle, Microwave, Tap, Kitchen Faucet

Dynamic Act03 Prepare lunch Kitchen, Dining room
Motion Sensor Bedroom, Sensor Kitchen Movement,

Refrigerator, Pantry, Cupboard Cups, Cutlery, Pots, Microwave

Dynamic Act04 Prepare dinner Kitchen, Dining room
Motion Sensor Bedroom, Sensor Kitchen Movement,

Refrigerator, Pantry, Dish, microwave

Dynamic Act05 Breakfast Kitchen, Dining room
Motion Sensor Bedroom, Sensor Kitchen Movement,

Pots, Dishwasher,Tap, Kitchen Faucet

Dynamic Act06 Lunch Kitchen, Dining room
Motion Sensor Bedroom, Sensor Kitchen Movement,

Pots, Dishwasher,Tap, Kitchen Faucet

Dynamic Act07 Dinner Kitchen, Dining room
Motion Sensor Bedroom, Sensor Kitchen Movement,

Pots, Dishwasher,Tap, Kitchen Faucet

Dynamic Act08 Eat a snack Kitchen, Living room
Motion Sensor Bedroom, Sensor Kitchen Movement,
Fruit Platter, Pots, Dishwasher,Tap, Kitchen Faucet

Static Act09 Watch TV Living room
RemoteControl, Motion Sensor Sofa,

Pressure Sofa, TV
Dynamic Act10 Enter the SmartLab Entrance Door

Static Act11 Play a video game Living room
Motion Sensor Sofa, Motion Sensor Bedroom,

Pressure Sofa, Remote XBOX

Static Act12 Relax on the sofa Living room
Motion Sensor Sofa, Motion Sensor Bedroom,

Pressure Sofa
Dynamic Act13 Leave the SmartLab Entrance Door
Dynamic Act14 Visit in the SmartLab Entrance Door
Dynamic Act15 Put waste in the bin Kitchen, Entrance Trash
Dynamic Act16 Wash hands bathroom Motion Sensor Bathroom, Tap, Tank
Dynamic Act17 Brush teeth bathroom Motion Sensor Bathroom, Tap, Tank

Static Act18 Use the toilet bathroom Motion Sensor Bathroom, Top WC
Static Act19 Wash dishes Kitchen dish, dishwasher

Dynamic Act20
Put washing into

the washing machine
Bedroom, Kitchen Laundry Basket, Washing machine, Closet

Static Act21 Work at the table Workplace

Dynamic Act22 Dressing Bedroom
Wardrobe Clothes, Pyjama drawer,

Laundry Basket, Closet
Static Act23 Go to the bed Bedroom Motion Sensor bedroom, Bed
Static Act24 Wake up Bedroom Motion Sensor bedroom, Bed

Concurrent Sensor State Modeling

The object properties introduced in SemImputOnt as an existential restriction support management

of concurrent and sequential sensor states as explained in the Breakfast activity model example.

These properties not only describe the hierarchy of sensor object states, and their actions by estab-

lishing object–data relationships but also support in augmenting the incomplete sensor sequences

using SPARQL queries. Moreover, the relationship also supports, while generalizing data-driven

rules as shown in the anonymous equivalent class for the activity Breakfast. These rules map
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sensor states in SemImputOnt to model an activity rather than tracking rigid sensor state patterns.

These sensor state patterns are identified and linked to their respective timestamps using tempo-

ral datatype properties such as hasStartTime and hasEndTime. SemImputOnt comprehensively

models sensor situations using sensor state concepts independently and concurrently by exploiting

their relationships using Allen’s temporal operators [155].

3.1.6 Semantic Segmentation

The Semantic Segmentation Layer in the SemImput framework describes the ontological opera-

tions to illustrate the modeling patterns of ADLs, by observing them in a sliding window. The

first step is to retrieve and synchronize the non-segmented sensor state instances obtained from

obtrusive and unobtrusive data sources along with their temporal information. We used a non-

overlapping and static sliding time windows [180] approach, in which each sensor state is identi-

fied by a timestamp. For this, we used a set of 9 SPARQL-based query templates for retrieving and

interpreting rules to deal with underlying temporal sensor state relations, as well as their structural

properties. Moreover, the SPARQL queries require additional parameters in order to correlate, in-

terpret, and aggregate sensor states within the endpoints of the sliding window [24]. Some of the

initializing parameters include start-time, end-time, and a list of sensors within the sliding window

identified based on the start-time and datatype properties. These parameters provide support for

manipulating concurrent sensors states, which are expanded and imputed as illustrated in further

sections. SemImputOnt is also used for validating temporal constraints and for the verification of

property values within a sliding window [181]. The sensor state endpoints are retrieved through

the following custom set of conjunctive ABox SPARQL queries CQ where (cqi ε CQ) over the

sliding time window:

• cq1: Valid Open sensor state

• cq2: Valid Closed sensor state

• cq3: Start-time of Next, sensor state

• cq4: Sensor having Open state within the sliding window
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• cq5: Sensor having Closed state within the sliding window

whereas the concurrent sensor states are retrieved through following SPARQL-based query tem-

plates, which are also coincidental at their:

• cq6: start-time and still Open sensor states

• cq7: start-time but Closed sensor states

• cq8: end-time but still Open sensor states

• cq9: end-time but Closed sensor states

The SPARQL query, cq1, refers to the identifiers from the SemImputOnt retrieved instances,

which are still active but are yet to be finished. These states are identified based on their initial-

ization timestamps represented by the start-time. The query cq2 retrieves SemImputOnt instances

having both endpoints identified by start-time and end-time. The query cq3 retrieves the start-time

of the sensor initialization, which may deactivate and at the same time becomes active in a current

sliding time window. The query cq4 retrieves sensor state, which has just started in the sliding

window; this query provides the start-time. The query cq5, a specially designed query to monitor

the sensor state, which is currently active in the sliding window and changes its states to deactiva-

tion or off state. This query retrieves the end-time for such state transition. The query cq6 retrieves

active concurrent sensor states for more than one sensor, based on the start-time within the current

sliding time window which is yet to finish. The query cq7 on the other hand fetches the start-time

for such concurrent sensors, which have closed states with valid end-times. Similarly, the queries

cq8 and cq9 retrieve the active and inactive concurrent sensor states based on some end-time data

value, respectively. The above-mentioned queries cq3, cq4, and cq6 are responsible for initializing

a separate thread to monitor and keep the track for sensor states which are to become inactive by

identifying the end-time.

The segments returned through the SPARQL queries may be considered complete if they con-

tain both the endpoints represented by dissimilar sensor states. If one of the end points goes

missing, however, the segment becomes anomalous or erroneous in the sensor stream data. Such

erroneous behavior is identified by using semantic data expansion and resolved through the se-

mantic imputation.
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3.1.7 Semantic Data Expansion

The proposed set of SemImputOnt models sensor objects (concepts and properties) and their states

(instances) from the segmented Dn datasets. It not only maps sensor streams but also captures

structure, preserving the associations within the sensor state instances using a data-driven ap-

proach. A structure-preserving transformation encompasses each sensor object, their associations,

and subsumptions relating to different concurrent activities [182]. These preserved semantics and

associations are separated by understanding the complex activity structures. The separation pro-

cess includes conversions of these semantics into distinct columns while conjunctions in between

them provide essential existential conditions for representing activities in a matrix.

Ontology-Based Complex Activity Structures

To encode more detailed structure, the SemImputOnt uses primitive and defined concepts with

value-restriction and conjunctions as concept-forming operators. These value restrictions are en-

forced through classifiable attributes (roles) and non-classifiable attributes (non-definitional roles)

to model HAR datasets. In SemImputOnt, primitive-concepts (Activities) provide necessary con-

ditions for membership, whereas defined concepts (Sensors, Objects, Data sources) provide both

necessary and sufficient conditions for membership as mentioned below:

A v C; (3.1)

A ≡ C; (3.2)

whereA is any Activity name, and C defines a primitive concept or a defined concept as mentioned

in Equations (3.1 and 3.2), respectively. These concepts are used to form an expression, which

can be either a sensor state, or conjunction of sensor states with or without a value-restriction as
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described below:

C → A1;C → (∀R.A2 u ∃R);C → C1 u C2 (3.3)

Here, A1, A2 are attribute, R is a conjoined predicate, and C1, C2 are concept instances form-

ing expressions.

Utilizing the Description Logic (DL) notations, an example of Breakfast Activity from UCamI

dataset can be described in DL expression as:

Breakfast ≡ Activities u ∃ hasBinarySensorObject.SensorKitchenMovement u ∀ hasBina-

rySensorState.(Movement t NoMovement) u ∃ hasAccelerometer.(x u y u z) u ∃ hasDe-

vice.(Device1 u Device2) u ∃ hasFloorCapacitance.(C1 u C2 u C3 u C4 u C5 u C6 u C7 u

C8) u ∀ hasBLESensor.(Tap u ∃ hasRSSI.RSSI t FoodCupboard u ∃ hasRSSI.RSSI t Fridge u

∃ hasRSSI.RSSI t WaterBottle u ∃ hasRSSI.RSSI) u ∀ hasDaySession.Morning

whereas the same activity Breakfast using the DL attributes from UCI-ADL dataset is described

as:

Breakfast ≡ UCI-ADL u ∃ hasPlace Kitchen u ∀ hasPlace Kitchen u ∃ hasSensorLocation

(Cooktop t Cupboard t Fridge tMicrowave t Seat t Toaster) u ∀ hasSensorLocation (Cooktop

t Cupboard t Fridge t Microwave t Seat t Toaster) u ∀ hasSensorType (Electric t Magnetic

t PIR t Pressure)

In both the expressions, the activity Breakfast is represented by different concept attributes

modeled into their corresponding ontologies in the SemImputOnt. It is evident that this activity

is represented by different sets of underlying ontological concepts depending upon the nature

of sensors deployed for acquiring the datasets for that activity. Keeping the same definition of

each activity represented by different underlying constructs may result in recognition performance

degradation. For this reason, they are defined separately, as the focus of the study is to fill in the

gaps for missing sensor states.

The primitive concepts are mapped into partial concepts using Web Ontology Language

(OWL), which are encoded with rdfs:subClassOf construct (Equation (3.1)). In addition, the

defined concepts are mapped to complete concepts in OWL, which are encoded as class equiva-

lence axioms represented as owl:equivalentClass (equation 3.2). The concept names and concept
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conjunctions are mapped to class names and class intersections in OWL, respectively, whereas

roles are mapped with object properties. These primitive and defined concepts definitions map the

data instances into SemImputOnt models for representing complex activities.

Conjunction Separation

The concepts expressed in the DL for Breakfast definition uses conjunctions for relating the sensor

state events [183]. The Breakfast equivalent class forming a complex activity with the involve-

ment of several Class concepts, relationships (object & data properties), and data instances. All

the involved Class concepts coupled with conjunctions defining the Activity equivalent classes are

transformed into independent entities by separating them based on involved conjunctions [154].

Conjunction separation emphasizes the idea of concept (ϕ,ψ, ω, χ . . . ) separation over the inten-

tion I such as:

|= I (ϕ ∧ ψ ∧ ω ∧ χ . . . )→ I (ϕ) ∧ I (ψ) ∧ I (ω) ∧ I (χ) . . . (3.4)

These independent entities are transformed into multi-dimensional vectors representing the

features from all sensor states for a particular activity w.r.t. associated timestamps. The size of

the multi-dimensional vector may vary for each activity based on the conjunctive class concepts

learned through the data modeled over SemImputOnt.

Feature Transformation

The predicates separated in the previous step produces a row vector identified by a single activity

label, whereas column represents the class concepts with states as an instance. These predicates

in the feature space represent activities along with the timeline. These features ensure the relia-

bility of activities through mappings with the SemImputOnt [152,183]. In our case, SemImputOnt

supports essential properties while generating and validating the data into ABox A features as

provided using an example from the UCamI dataset.

An ← {BinSens1, BinSens2, . . . BinSens30, BLE1, . . . BLE15, C1, C2, . . . C8, x, y, z}
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(3.5)

where n = {1, 2 . . . 24}, BinSens can have one of the states at a unit time T1sec from { Open,

Close, Present, No present, Pressure, No Pressure, Movement, No Movement}. These state map-

pings result into a matrix representing each row with a single activity and every column with Class

concepts. Each of the separated concept supports modification of one segment independent of the

others column-wise.

Algorithm 2 Semantic Imputation Using ISS(Am), ISI(Am), and IL(Am) through SPARQL
Queries

Input: Incomplete Segmented Data Am,A, Dseg

Output: Complete Data with Imputation AImpm . Segmented Imputed Dataset.
1: procedure SEMANTICIMPUTATION
2: for all timestamp t = 1 to T do
3: function ImputeBinSens(Am, CQ,A, T ) . BinSensattrib with their state

imputation
4: for (cqiεCQ) do
5: BinSensAttrib ← execute(cqi).filter(BinSens,Am) . using SPARQL

Queries
6: BinSensTarget ← execute(cqi).filter(BinSensAttrib, T )
7: ABSatt ← BinSensAttrib
8: ABStar ← BinSensTarget
9: max(ISS)← Compute ISS(ABStar , ABSatt) . Equation (10)

10: ABSatt ← ABSatt ∪ (ABStar \ABSatt) . Update missing BinSens Attribute
11: BinSensmappings ← retrieve.mappingsLists(BinSensLOCF , BinSensNOCB)
12: while ABSatt(state) = φ do . Load Updated BinSens attributes
13: if (ABSatt in BinSensListLOCF ) then . based on BinSens

characteristics
14: ABSstate ← execute(cqi).retrieveLastState.(ABSatt)
15: ABS ← IL(ABSatt , ABSstate)
16: else if (ABSatt in BinSensListNOCB) then
17: ABSstate ← execute(cqi).retrieveNext, State.(ABSatt)
18: ABS ← IL(ABSatt , ABSstate)

19: end if
20: end while
21: end for
22: Return Imputed ABS
23: end function
24: function ImputeProximity(Am, CQ). Imputation for Proximity Sensors and their

values
25: for (cqiεCQ) do
26: AProx ← execute(cqi).filter(Proximity,Am)
27: Proxmax ← maxV alue(AProx)
28: AProx ← Update AProx(Proxmax)
29: end for
30: Return Imputed AProx
31: end function
32: function ImputeF loor(Am, CQ,A) . Imputation for Floor sensors and their values
33: for (cqiεCQ) do
34: Amfloor ← execute(cqi).filter(Floor,Am)
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35: Atfloor ← execute(cqi).filter(Amfloor, A)
36: mean(floortuples)← Compute ISI(Atfloor, Amfloor) . Equation (13)
37: Afloor ←Update Amfloor ∪mean(floortuple) . update using mean for

tuples
38: end for
39: Return Imputed Afloor
40: end function
41: function ImputeAccelerometer(Am, CQ,A) . Imputation for accelerometer

values
42: for (cqiεCQ) do
43: AmAcc ← execute(cqi).filter(Acc,Am)
44: AtAcc ← execute(cqi).filter(AmAcc, A)
45: mean(acctuples)← Compute ISI(AtAcc, AmAcc)
46: AAcc ←Update AmAcc ∪mean(acctuples) . update using mean for last 10

tuples
47: end for
48: Return Imputed AAcc
49: end function
50: end for
51: AImpm ← ABS ‖AProx ‖Afloor ‖AAcc
52: increment t by 3 sec
53: end procedure

3.1.8 Semantic Data Imputation

The resulting n-dimension feature vector matrix has missing sensor states (Null), which lead to

the loss in efficiency for the activity classification model. Such losses can be dealt with suitable

imputation techniques, which enriches the expanded data semantically by filling in the missing

sensor states. We propose a Semantic Imputation algorithm to capture the temporal missing sensor

states semantically and perform an overall feature vector matrix enrichment [184]. We adapt two

similarity-based methods and a time-series longitudinal imputation strategy to assess similarity of

the concepts T and instances A for imputation I(Am) as described in Algorithm 2.

Structure-Based Imputation Measure

The structural patterns in TBox (T ) are identified and exploited using SPARQL queries over the

SemImputOnt. These queries could retrieve T assertions based on the query criteria to measure

semantic similarity with target activity patterns. However, choosing a suitable pattern from target

activities and selecting the appropriate sensor state to fill in the missing ones is addressed through

structure-based similarity measure. We define structural similarity function for a target set of
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description An and activity Am with missing attributes to identify maximum probability as:

Simss : An ×Am 7−→ [0 . . . 1] (3.6)

It returns semantically equivalent sensor states where the child nodes for two concepts are sim-

ilar [185]. We use the Tanimoto coefficient between An and Am for measuring the structural

similarity. An gives the binary description for the involved sensors and Am are the available

sensor predicates for the activity with missing predicates mentioned below:

ISS(Am) = Simss(An, Am)

=

∑k
j=1An ×Am(∑k

j=1A
2
n +

∑k
j=1A

2
m −

∑k
j=1An ×Am

) (3.7)

The ISS(Am) function determines the structural similarity among the target An and Am, the

higher the numerical value is, a more closer structural description of Am instance is with An

description [186, 187]. As a result, structural attributes are suggested for a tuple Am with missing

attributes.

Instance-Based Imputation Measure

The ABoxA is comprised of a finite set of membership assertionsA referring to the concepts and

membership roles to their respective TBox T . The set of assertions A for the UCamI dataset is

represented as:

A ← (ts, rs,Ri,Vi) (3.8)

Each of the assertion is a combination of sensors rs with their certain states Vi at a timestamp

ts.

(rs,Ri,Vi)← 〈binsens1...30,Rα,Vα〉
⋃
〈ble1...15,Rβ,Vβ〉

⋃
〈c1...8,Rε,Vε〉

⋃
〈accx,y,z,Rϕ,Vϕ〉

(3.9)
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where binsens1...30 are the object names referring to the concept BinarySensor in the SemIm-

putOnt, ranging from 1 and 30 with binary states [0, 1] represented as Vα. ble1...15 refers object

names, which are members for Proximity concept having values Vβ , Intelligent Floor concept hav-

ing assertions c1...8 with values Vε and accelerometer SmartWatch concept having membership for

with values as Vϕ. Instance-based similarity ISI(Am) is measured [188] between target activity

instance An and instance with missing states Am as:

ISI(Am) = SimI(An,Am)

= maxm
overlap (An,Am,m)

An
⊎
Am

(3.10)

where m is the mapping betweenAn andAm in conjunction with concept-to-concept and roles-to-

roles. In addition, An
⊎
Am represents the disjoint union of memberships pertaining to concepts

and their roles between them. Instance-based similarity exploits neighborhood similarity by mea-

suring similarity through SimI(An,Am) function. Thus, an instance with high similarity value is

chosen for attribute states to be imputed for a tuple Am with missing states.

Longitudinal Imputation Measure

The quality of data, resulting from structure and instance-based imputation in a matrix form, is

further improved by using classical techniques of Last Observation Carried Forward (LOCF) and

Next Observation Carried Backward (NOCB). LOCF and NOCB are applied to the data in an

observable manner by analyzing each longitudinal segment, as described in Equation (3.4), for

activity states retrieved through SPARQL queries. While observing the binary sensors and their

states in a time series longitudinal segments, it is observed that the sensor states are triggered once

either for activation or deactivation. For example, an object Washing Machine in UCamI dataset

has a contact type sensor with Open state at T1 = 2017-11-10 13:37:56.0 and Close state at T2

= 2017-11-10 13:38:39.0. In this case, while synchronizing this sensor data with other states per

unit time, Null values appear after T1 till T2 as the states triggered for once. For this LOCF, a

sample-and-hold method is activated, which carries forward the last state and imputes the Null

values with this last available sensor state. Similarly, NOCB imputes the missing values from

next available state, which is carried backwards. The missing states for Proximity sensors in the
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Algorithm 3 Semantic Vectorization Using One-Hot Coding Technique

Input: AImpm . Extract scalar sequence (BinSens, Proximity)
Output: M . Vectorized feature Matrix.

1: procedure SEMANTICVECTORIZATION
2: for all timestamp t = 1 to T do
3: function BinSensV ectorization(CQ,AImpm )
4: for (cqiεCQ) do
5: BinSensAttrib ← execute(cqi).filter(BinSens,A

Imp
m )) . using SPARQL

Queries
6: BinSensstates ← execute(cqi).filter(BinSensAttrib))
7: while BinSensstates 6= φ do
8: BinSensV ec ← Map(BinSens,BinSensAttrib)
9: BinSensfCol ← Transform(n× p,BinSensV ec) . transform rows

into columns
10: BinSensstride ← StateReplace(BinSensV ec) . 1 for Active BinSens

or 0, otherwise
11: end while
12: end for
13: Return BinSensstride
14: end function

15: function ProxV ectorization(CQ,AImpm )
16: for (cqiεCQ) do
17: ProxAttrib ← execute(cqi).filter(Prox,A)) . using SPARQL Queries
18: Proxstates ← execute(cqi).filter(ProxAttrib))
19: while Proxstates(state) 6= φ do
20: ProxV ec ← Map(Prox, ProxAttrib)
21: ProxfCol ← Transform(n× p, ProxV ec) . transform rows into

columns
22: Proxstride ← StateReplace(ProxV ec) . Set 1 for highest RSSI and 0

for rest
23: end while
24: end for
25: Return Proxstride
26: end function
27: end for
28: M ← BinSensstride ‖ Proxstride ‖Afloor ‖AAcc
29: increment t by 3 sec
30: end procedure
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case of the UCamI dataset are imputed in a slightly different way as elaborated in Algorithm 2. It

identifies the proximity sensors and their respective RSSI values within the sliding window. The

proximity sensor utilizes maximum value imputation in which the LOCF method is applied until

some other proximity sensor with a value greater than the already known value is identified. For

continuous data such as Floor and Acceleration, a statistical approach is adopted to replace the

missing states with the mean of corresponding observed attributes. Mean imputation method tends

to be robust and easy to substitute the missing values.

3.1.9 Classification

To cross examine the effectiveness for imputed datasets using proposed SemImput framework, we

used a Deep Learning-based Artificial Neural Network (ANN) classifier [189]. The experimental

results proved to be suitable for multimodal, multi-sensory, and multi-feature datasets for HAR.

For this, an ANN model is trained with the labeled 2D training matrix instances for the UCamI,

Opportunity and UCI-ADL datasets. The computational complexity and recognition accuracies

are then assessed.

One-Hot Code Vectorization

It has been observed as advantageous to transform categorical variables using suitable feature en-

gineering before applying neural network [190]. For this, we used one-hot encoding, a robust

feature engineering scheme, for generating the suitable feature vector indices [156]. These cat-

egorical features are mapped into sensor state vector indices representing the concurrent sensor

activation patterns for a particular activity. This scheme expands the dimension of the feature ma-

trix for 2n possible combinations based on the binary states for the "n" sensors involved in the

feature vector. As described in Algorithm 3, n-dimensional sparse vector per unit time is obtained

for populating feature matrix required for classification. The value 1 is encoded where the sensor

has an active state and the value 0 is assigned for missing state in a row vector [190]. The missing
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value indicator r in the matrix is represented as rn,p with nth row and pth column:

rn,p =

1, value is observed

0, if value is missing
(3.11)

Algorithm 4 Semantic Deep Learning-based Artificial Neural Network (SemDeep-ANN)
Input: Labeled DatasetMlab,Unlabeled DatasetMunlab, and labels . Scalar sequence

equation 3.5
Output: Activity Labels An for theMunlab . HAR.

1: procedure DEEP LEARNING HAR
2: Forward Propagation
3: for all timestamp t = 1 to T do . Sliding Widow Process
4: DF ←Mlab . Retrieve Data (Feature Vectors Matrix)
5: x← normalize(DF ) . Preprocessing, reordering, filtering examples with no

missing labels
6: Sample, Split, FE, TV
7: Initialize random weights {w1, w1, . . . wn}T and biasness b
8: y = σ (

∑n
k=1wkxk + b) . applying nonlinear transformation σ using

y = σ
(
wTx+ b

)
9: fcy ← fully_connected_NN(y)

10: An ← soft_max(fcy) . Update weights in the network
11: Backward Propagation
12: Compute Cross entropy gradient . Use trained network to predict Activity labels
13: Apply gradient descent . Update network parameters
14: end for
15: Activity Labels← Use trained network model . Predict labels

16: end procedure

Artificial Neural Networks for HAR

We introduced a Semantic Deep Learning-based Artificial Neural Network (SemDeep-ANN) hav-

ing the ability to extract hierarchy of abstract features [191, 192] using a stack of convolutional

operators, which are supported by Convolutional Neural Networks (CNN). SemDeep-ANN con-

sists of three layers namely input layer, hidden layers, and output layer, which use vectorized

data to train model for probability estimation over the test data. The estimated probabilities are

obtained from the output layer through the soft_max activation function in addition to gradient

descent algorithm. Further details of the SemDeep-ANN are given in Algorithm 4.



Chapter 4
Vision-based Multioccupant State Imputation

This Chapter initially outlines the design challenges as how to impute missing objects in the ther-

mal frames. The proposed Vision-based Multioccupant State Imputation methodology uses mul-

tioccupant previous states and predict the missing states, which results in increased HAR recog-

nition accuracy. It further presents the algorithmic solutions and their inner details to deal with

vision-based challenges.

4.1 Introduction

The main challenges in CV-based object detection and tracking applications are correct identifica-

tion of ROI, reliable and efficient handling of moving objects along-with their inter-frame associa-

tions. These challenges, however, become even more complex for interacting multi-objects, which

may have erratic movements represented by low-resolution appearances in a frame sequence. For

this, an efficient method is required to predict their motion and manage data association [193].

Additionally, recognition of interaction amongst objects and classification of activities is also a

computationally intensive task and requires a more robust process. This further requires a trade-

off when implementing the above-mentioned methods in a more efficient manner for a complete,

coherent and correct detection, tracking and classification of an occupant’s activities. To address

the aforementioned challenges, as presented in Fig. 4.1, we propose a unified scalable unobtrusive

Multi-occupant Detection and Tracking (uMoDT) method, which detects, tracks and recognizes

different indoor activities under multioccupancy using TVS.

The uMoDT method addresses six strategies as described below:

• We propose an online method, which uses a CV-based algorithm, with improved morpho-

logical features, for an automatic multi-target initialization using frame differencing with an

66
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TVS Multioccupant Detection 
& Tracking

TVS Activity Recognition

TVS  Multioccupant Feature Vector

TVSFF
TVSMoAR

Unobtrusive Multioccupant Detection and Tracking (uMoDT)

for HAR
CV

CNN

Figure 4.1: Overview of proposed solution strategies as uMoDT framework

optimum threshold.

• We rely on refined morphological characteristics, which ensure efficient detection and track-

ing accuracy over the dynamic patterns for nonrigid moving targets per-frame.

• We use the Hungarian method for track assignment problem with an approach for maintain-

ing an association history of re-identified tracks of individual moving objects per-frame.

• The proposed method is validated using a dataset gathered at Smart Environments Research

Group (SERG) laboratory from the Ulster University, UK. It proved to be computationally

robust and achieves a promising tracking accuracy in comparison with other MOT methods.

• We also demonstrated quantitative evaluations on the publicly available dataset for the VOT-

TIR2016 challenge proving the practicality and efficacy of the proposed method with the

state-of-the-art.

• Additionally, we propose to apply a CNN architecture to extract and learn spatial features

from multiple successive Thermal Vision Sensor Frame (TVS-F) for individual action recog-

nition.

The focus of the presented work is to simultaneously detect multi-occupants as well as recog-

nize their activities frame-by-frame from TVS. It also requires a solution for resident data associ-

ation in a smart-home environment, which is accomplished by unifying two different approaches.
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Figure 4.2: Proposed unobtrusive Multi-occupant Detection and Tracking (uMoDT) method for
HAR
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(a)
(b)

(c)
(d)

(e)
(f)

(g)
(h)

(i)
(j)

(k)
(l)

(m
)

(n)
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Figure 4.3: (a) Empty smart living room. Single occupant activities shown as (b) Sitting (c)
Standing (d) Walking (e) Stretching (f) Fall Down. Multi-occupant activities shown as (g) Two
persons Sitting (h) One person Sitting while other Standing (i) One person Sitting while other
Walking (j) One person Standing while other Fall Down (k) Both persons Standing (l) One person
Standing while other Stretching (m) Both persons Walking (n) All are Walking (o) one person
Walking while other one Stretching
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Firstly, using the CV-based technique, which detects, tracks, and monitors the occupant within the

controlled area by observing a robust frame difference between the consecutive frames. Secondly,

the CNN layers are invoked by the TVS frame sequence (TV S_Fseq), which recognizes the occu-

pant’s individual activities such as Walking, Standing, Sitting, Fall down. Finally, the recognized

activities are associated with each occupant using the proposed Thermal Vision Sensor Feature

Fusion (TV SFF ) method per frame.

Algorithm 5 TVS-MoFV: Thermal Vision Sensor multi-occupant frame vector algorithm
Input TVS_F: Thermal Vision Sensor grayscale sequence frames;
Output: Multi-occupant Frame Vector TV SMoFV .

1: procedure TVS_MATPREPROCESSING
2: Load TV S_Fseq ← {TV S_F1, TV S_F2 . . . TV S_Fn} where i = {1, 2, . . . n}
3: Read Matrix TV S_Fseq . Reads sequence of frames TV S_Fseq
4: for all TV S_Fi to TV S_Fn do
5: function Low_thresholding(TV S_Fi)
6: TV S_Fi − TV S_Fi−1 > TV STh . Frame differencing sensitive to threshold
7: Bn ← TV S_Fi . Identify ’n’ Occupants as Blobs
8: TV S_Fi ← Gaussk,l(TV S_Fi) . Smoothing by Gaussian blur k=l=3
9: end function

10: function morphologicalTV SPreProcessing(TV S_Fi) . Morphological filtering
11: TV S_Fi ← Ekw,kh(TV S_Fi) . Erode: width ’w’ & height ’h’ =8
12: TV S_Fi ← Dkw,kh(TV S_Fi) . Dilate: width ’w’ & height ’h’ =8
13: end function
14: function Detect_Contour(TV S_Fi)
15: Cntn ← TV S_Fi
16: Find CntnContours
17: for all i = 1 to n do
18: min(B) < Cnti < max(B) .

min_Blob_Area < ContourArea < max_Blob_Area
19: Pxi,yi ← Cnti(pxi , pyi)
20: BRn ← boundingrectangle(Pxi,yi) . Assign Bounding_Rectangle
21: array [BR]← BRn . Populate Rectangle_Array
22: P� ← array [BR] . GetContourFeatures Perimeter
23: An ← area(Pxi,yi) . GetContourFeatures Area
24: A� ← array [BR]
25: Pavg ← Averagepixels(BRn) . Compute pixel p, average avg for

Bounding_Rectangle
26: end for
27: end function
28: end for
29: return TV SMoFV ←

[
Pxi,yi ,P�,An,A�, Cntn

]
30: end procedure
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4.2 Materials and methods

4.2.1 Computer vision-based occupant detection and tracking

This Chapter describes the inner details of the proposed method to detect the presence of multi-

occupants in real-time, and track them throughout the duration of TV S_Fseq by following them

from frame-by-frame. Fig. 4.2 illustrates the overall uMoDT method with underlying several

components, namely TVS sensor as an Input device, TVS-F Preprocessing, Occupant Tracking,

and TVS-F Feature Extraction. These components are connected in series whereas the information

flow between subcomponents is discussed further in the following subsections.

Input frames

In this study, we propose to mount the Heimann HTPA TVS [194] in the ceiling of the smart-

home’s living room and kitchen at the height of 3m. The monitored space is a quadrilateral area

with dimensions 4×3.5m. This setting provides a clear field of view and collects an aerial view

of the multi-occupants as seen in Fig. 4.3. It also overcomes the challenges related to occupant-

to-occupant and, occupant-to-scene occlusion, whilst avoiding camera motion and is operative

even in complete darkness. The TVS ensures a high degree of user’s privacy by capturing low-

resolution grayscale TV S_Fseq with the dimensions of 32h×31v×1. Each of the 992 pixels

correspond to an area within the smart living room and kitchen represented by each pixel value

ranging between 0 and 255. This range sets a correspondence of every pixel with an average

temperature characteristic to that area. The TV S_Fseq is managed by using RESTful HTTP

services, which are processed by the server.

Multi-occupant Feature Vector (TVS-MoFV)

The frames represent the presence of heat sources within the TV S_Fseq. The characteristics of

identified heat sources are calculated by using the proposed Thermal Vision Sensor Multi-occupant

Feature Vector (TVS-MoFV) algorithm. It gathers multi-occupant feature vectors in TV S_Fseq

frame-by-frame. The series of tasks performed by TVS-MoFV are described in Algorithm 5,

which are summarized as follows:-
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• Converts the JSON 32×31 matrices into the sequence of frames TV S_Fseq.

• Segments the TV S_Fn frames in order to detect foreground (multi-occupant) and back-

ground (static smart living room or kitchen) per frame.

• Applies the Low_thresholding TV STh function with a background subtraction method sen-

sitive to threshold [195].

• Convolves the TVS-F using Gaussian Kernel Guassk,l for smoothing and reducing noise

with the kernel k=l=3.

• Performs morphological filtering and binarization on TV S_Fn to reduce the thermal noise

using operations such as Erode Ekw,kh and Dilate Dkw,kh .

• Determines the presence of multi-occupant using connected pixels termed as the contours

Cntn represented by blobs in the sequence of binary frames TV S_Fn.

• Assigns and encapsulates each identified Cnti, within the ROI, represented by Bounding

Rectangles i.e. BRn.

• Estimates the centroid Pxi,yi for the identified Cnti surrounded by BRn, which acts as a

pivot for further tracking.

• Computes an array of the morphological feature vector for every TV S_Fi frame, which

includes Perimeter P�, Area A�, and Contour Pixel Average Pavg for every BRn in the

TV S_Fi.

The learned frame vector TV SMoFV from every TVS-F comprises of the morphological states

of the detected occupant. These states represent the occupant’s thermal area, a center of contour,

a perimeter of the bounding box, and the area enclosed within the bounding box encapsulating

the occupant. These multiple features become the basis for TV SMoAR with the support of the

proposed method TV SFF required for the data association before recognizing and associating

individual activities.
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Algorithm 6 TVS-MoDT: Thermal Vision Sensor multi-occupant detection and tracking algo-
rithm
Input TVS_F: Thermal Vision Sensor gray-scale frame sequence;

Output: Multi-occupant tracks TMoDT .
1: procedure TVS_MATPREPROCESSING
2: Load TV S_Fseq ← {TV S_F1, TV S_F2 . . . TV S_Fn} where i = {1, 2, . . . n}
3: Read Matrix TV S_Fseq . Reads Sequence of Frames TV S_Fseq
4: for all TV S_Fi to TV S_Fn do
5: function VECTORPOINT Vp(TV S_Fi, Cntn) . Detect_VectorPoint
6: for all i = 1 to n do
7: P+

c ← BRn {Cntn} . Iterate Contours
8: array [D]← P+

c . Array of detections
9: TV S_Fi ← Draw (BRn, TV S_Fi) . drawRectangle← Contours

10: TV S_Fi ← Draw (P+
c , TV S_Fi) . drawCenterPoint← Contours

11: end for
12: end function
13: function TRACK Ti(Cntn,D, TV S_Fi) . initialize (NoOfTracks, TrackSize)
14: for all i = 1 to Size ([D]) do
15: Ti ← new(T ,D)
16: Cost [i] [i]← Euclid(T predi ,D) . Euclidean distance between prediction &

detection
17: C ← Cost [i] [j]

18:
−→
A ← V ector(Assignment)

19: T assigni ← HungarianAssignment (C,
−→
A)

20: if (C > Dthreshold) then . Identify unAssigned_tracks
21: [T unassingedi ]← add(T unassingedi ) . Search Un_Assigned_Tracks
22: end if
23: if ([T VS_Fskippedi ] > maxf ) then
24: T VS_F i ← remove (T VS_F i) . Remove not detected tracks
25:

−→
A ← remove (

−→
Ai) . Remove assignments

26: end if
27: if (size(Dunassigned

i ) > 0) then
28: Ti ← add(Ti,Dunassigned

i ) . Initialize New_Tracks for
un_Assigned_Detects

29: end if
30: Ti ← T skippedi > T VSSkippedAllowed
31: /* Update Kalman for All Detected Contours */
32: T VS ← UpdateKalman(TV S_Fi,D) . Predict, Update Kalman Occupant

State
33: /* Iterate the No of contours, detections in the T VS_F i */
34: for all t = 1 to Size (

−→
A ) do

35: Tid ← Ti(t)
36: T VS_F i ← T VS_Fappend(T VS_F i, Tid,P+

c ) . Draw tracks
37: [T VS_F i]history ← T VS_Fappend(T VS_F i,P+

c ) . Contours & Tracks
History

38: end for
39: /* Update T VS_F i with Kalman Prediction and Correction */
40: It← n (Cntn) . Number of Contours
41: while It.hasnext do
42: TV S_Fi ← update (TV S_Fi,P+

c , [T VS_F i]history) . Kalman Effect
43: TV S_Fi ← draw (P+

c , [T VS_F i]history) . Kalman prediction updation
44: TV S_Fi ← draw_line (P+

c , Ti−1, Ti, [T VS_F i]history)
45: end while
46: end for
47: end function
48: end for return TMoDT
49: end procedure
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Multi-occupant Detection and Tracking (TVS-MoDT)

Algorithm 6 describes the TVS Multi-occupant Detection and Tracking (TVS-MoDT) method to

identify, predict, plot, visualize, and maintain the occupant’s tracks within TV S_Fseq. Some of

the key features for this algorithm are summarized as below:-

• The TV S_Fseq is read as input simultaneously as in the case of Algorithm 5.

• The detected contours Cnti through Algorithm 5 are iterated within TV S_Fseq for comput-

ing the vector point Vp responsible for tracking and maintaining the history of the tracks as

shown in Line 4-11.

• For every detection D for Cnti the tracks Ti are initialized as shown in Line 15.

• We used two classical efficient methods, Hungarian method, and KF to handle the oc-

cupant’s data association and smoother motion refinement with position prediction of the

multi-occupant respectively.

• The optimal assignment
−→
A and cost C computation task for tracks T assigni is performed

using the Hungarian method.

• We employed KF to generate multi-occupant motion trajectories i.e. estimation and position

prediction for the blob representing each of the individual occupants as mentioned in the

Line 32.

• The UpdateKalman prediction function predicts the position of the occupant based on the

history from previous TVS-F whereas the update function rectifies the state of the multi-

occupant from the current TVS-F (Lines 39-45).

• Every multi-occupant being tracked is assigned Tracking ID (Tid) representing tracklets.

The morphological features such as position, size and other statistical measurements are

also calculated for blob.

• Tid is dynamically assigned (or reassigned) to blobs with rapidly varying sizes. The array

with tracking identifiers represents each occupant’s motion model and state history.
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4.2.2 CNN-based activity classification

The CNN has been utilized for real-time multi-occupant AR from the TV S_Fseq. It is compu-

tationally built on five major mathematical functions such as Convolution, Batch Normalization,

Rectified Linear Unit (ReLU), Pooling, and Soft-max. These functions are applied in a hierarchi-

cal residual block within an architecture, which provides fully connected layers for processing

TV S_Fseq to get multi-occupant activity classification output per frame. These are briefly dis-

cussed in the following subsections.

Input layer

An input layer for the CNN architecture reads the grayscale TV S_Fseq of the fixed dimensionality,

requires TV S_FTrain to train the model while producing an output TV S_Flabelled, representing

"n" activities performed by the multi-occupants.

TV S_Flabelled ← {TV S_Fseq, TV S_FTrain, actn}CNN (4.1)

Convolutional layer

The Convolutional Layer is responsible for extracting the pixel-wise features from the input TVS-

F. To learn the TVS-F features, the kernel weights are adjusted automatically through back-

propagation training. The convolution is obtained by taking dot product (•) between sub-part

of the TVS-F and the convolutional kernel K. In response, a feature map fc is computed by slid-

ing the convolutional kernel over the TVS-F spatially. The output xl,ji for the lth convolutional

layer having the jth feature map on the ith unit can be presented mathematically as:

xl,ji = σ

(
bj +

m∑
a=1

wjax
l−1,j
i+a−1

)
(4.2)

where σ is a non-linear mapping, it uses hyperbolic tangent function, tanh(·) [196].
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Batch normalization layer

The input channel x across the mini-batch is normalized x̂i by the introduction of a batch nor-

malization layer [197]. Normalized activation is computed using mini-batch mean µB , standard

deviation σ2B for input channel x, and ε to provide the numeric stability for mini-batch variances,

described as:

x̂i =
xi − µB√
σ2B + ε

(4.3)

It increases the performance of CNN training and reduces sensitivity of the neural nets.

ReLU layer

Rectified Linear Unit (ReLU), a nonlinear activation function responsible for introducing a point-

wise non-linearity to the CNN by resolving the vanishing gradient problem [75]. ReLU layer

processes an element-wise activation function over each individual input x, wherever the value is

less than zero, is set to zero and it also linearly conveys the input for positive inputs described by

Eq. 4.4:

fτ = ReLU(xi) =

 xi, xi ≥ 0;

0, xi < 0;
(4.4)

A rectified feature map fτ is obtained as an outcome.

Max-pooling layer

The max-pooling layer produces compact feature space by taking the sub-samples of fτ thus

reducing the spatial dimensionality and sensitivity of the output. The pooling operation derives

maximum value from the set of nearby inputs as mentioned in equation 4.2, which can also be

represented mathematically as [170]:

f l,ji = max
r∈R

(xl,ji×T+r) (4.5)
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where R represents pooling size and T as a pooling stride. The soft-max classifier is placed at the

final layer for HAR. The TVS-F features obtained from the stacked convolutional and pooling are

represented as:

f l = [f1, f2, f3.....fK ] (4.6)

where K represents the number of units learned from the last pooling layer, which acts as a feature

map for the soft-max classifier.

Table 4.1: List of 16 activities recorded for data collection
Activity ID Activity Type Activity Name No. of Occupants

Act1 Single FallDown 1
Act2, Act3 Single, Multi Sitting 1, 2
Act4 Multi SittingStanding 2
Act5 Multi SittingWalking 2

Act6, Act8 Single, Multi Standing 1, 2
Act7 Multi StandingFallDown 2
Act9 Multi StandingStretching 2
Act10 Multi StandingWalking 2
Act11 Single Stretching 1

Act12, Act15, Act16 Single, Mutli Walking 1, 2, 3
Act13 Multi WalkingFallDown 2
Act14 Multi WalkingStretching 2

Training process

The CNN is trained in a supervised learning fashion by selecting the parameters using Gradient-

based optimization method. For faster convergence, the stochastic gradient descent method is

applied [198]. The training process involves a series of steps such as propagation and weight

update. The gradients are computed in the propagation step by using standard forward [196]

and back-propagation algorithms [199], by minimizing the objective function, which is given

mathematically as:

xli =
∑
j

wl−1j,i σ(xl−1i ) + bl−1i (4.7)
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where xli represents the output feature and w is the weight vector. The output feature map is passed

to every subsequent layer till it reaches the output layer, which is formulated as:

∂L

∂yl−1i,j

=
m−1∑
a=0

∂L

∂xli−a

∂xli−a

∂yl−1i,j

=
m−1∑
a=0

∂L

∂xli−a
wa,b (4.8)

It applies chain-rule for computing the propagation error and the whole process remains cyclic

until the CNN reaches a satisfactory validation state or attains the stopping criterion.

Classification

The soft-max regression function in the final layer of the neural network leads to the multi-

occupant HAR using TVS-based Activity Recognition (TVS-AR) method. It normalizes the output,

which is computed by fully connected layers, and more often is a combination of a set of positive

numbers with their sum equivalent to one, and value ranges between [0 . . . 1]. These ranges are

further transformed into classification probabilities through the Classification layer in the CNN

residual block. The i-th probability value for soft-max function p(yi) [200] is computed as:

ŷi = p(yi) = softmax(xi) =
exp(xi)∑n
k=1 exp(xk)

, i = 1 . . . Nc (4.9)

The cross-entropy [199] is minimized between the output probability vector ŷ and total number of

class labels ’y’ as follows:

E = −
Nc∑
i=1

(yilog(ŷi) + (1− yi)log(ŷi)), i = 1 . . . Nc (4.10)

where yi represents binary indicator if the class label ’c’ is correctly classified from the ith neuron

and ŷ is the predicted probability of the ith class.

4.3 Experimental Results

The complete real-time prototype application for our proposed uMoDT method is built for multi-

occupant detection, tracking and AR. To demonstrate the functionality of the uMoDT method, we
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first discuss the dataset and later the implementation insights.

Table 4.2: List of benchmark dataset sequences and their details

ID Dataset Sensor Resolution Frames Object Threshold

1 ETHZ-CLA [201] FLIR TAU320 324×256 659 Human 115
2 Soccer [9, 202] 3×AXIS Q-1922 1920×480 3,000 Human 120
3 Crouching [202] FLIR A655SC 640×480 625 Human 125
4 Depthwise Crossing [202] FLIR A655SC 640×480 858 Human 135
5 Crowd [202] FLIR Photon 320 640×512 78 Human 110
6 TV S_Fseq Heimann 32×31 57,290 Human 155

Table 4.3: Processing time for benchmarks and TV S_Fseq with TVS-MoDT and TVS-AR algo-
rithms

Algorithm Dataset Duration(s)

ETHZ-CLA 3.91×10−6

Soccer 2.99×10−6

TVS-MoDT Crouching 6.35×10−6

Depthwise Crossing 2.93×10−6

Crowd 2.93×10−6

TV S_Fseq 4.88×10−6

TV S_Fseq(O = 1) 7.1×10−2

TVS-AR TV S_Fseq(O = 2) 8.3×10−2

TV S_Fseq(O = 3) 9.0×10−2

4.3.1 Dataset

We collected 57,290 frames in a sequence from three healthy male volunteers aging 25±7 [yrs];

height 1.55±0.7 [m] and weight 68±8 [kg]. Each volunteer performed different ADLs individ-

ually and collectively in a smart living room over a duration of at least 3 minutes each, reported

in Table 4.1. During the entire collection, the application was neither reparameterized nor recali-

brated, which means this setting remained valid for all kind of ADLs performed during this study.

Additionally, TV S_Fseq was annotated with LabelImg, an open source annotation tool [203].

During labeling, multi-occupants were approximated by using bounding rectangles over the sub-

sequent frames by assigning them unique identifiers referred as ground-truth Gi in the TV S_Fseq.

This process followed a strict annotation protocol by qualified researchers.
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The goal is to quantitatively evaluate the proposed uMoDT method and prove its accuracy

and robustness. For this, we tested and compared it, also on five challenging, publicly available

annotated sequences from VOT-TIR2016 challenge [202, 204]. These sequences were mostly

captured with the help of static FLIR and thermal cameras.

Table 4.4: TVS-AR: Activity recognition for multi-occupants using Convolution Neural Networks
Layer Layer Type Activation Parameters (No. of units, Size, Stride)
1 TV S_Fseq Image Input 32×32×1 images with zerocenter normalization
2 conv1 Convolution 16 3×3×1 convolutions with stride [1 1] and padding [1 1 1

1]
3 batchnorm1 Batch Normalization Batch normalization with 16 channels
4 relu1 ReLU ReLU
5 maxpool1 Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]
6 conv2 Convolution 32 3×3×16 convolutions with stride [1 1] and padding [1 1 1

1]
7 batchnorm2 Batch Normalization Batch normalization with 32 channels
8 relu2 ReLU ReLU
9 maxpool2 Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]
10 conv3 Convolution 32 3×3×32 convolutions with stride [1 1] and padding [1 1 1

1]
11 batchnorm3 Batch Normalization Batch normalization with 32 channels
12 relu3 ReLU ReLU
13 maxpool3 Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]
14 conv4 Convolution 64 3×3×32 convolutions with stride [1 1] and padding [1 1 1

1]
15 batchnorm4 Batch Normalization Batch normalization with 64 channels
16 relu4 ReLU ReLU
17 fc Fully Connected 16 fully connected layers
18 soft-max soft-max Bayesian binary classifier
19 classoutput Classification Output crossentropyex with FallDown and 15 other classes

4.3.2 Implementation details

The proposed uMoDT method, comprising of TVS-MoFV (Algorithm 5), TVS-MoDT (Algo-

rithm 6) and TVS-AR method, was implemented. The former algorithms utilize the Java-based

standard libraries OpenCV (an open-source API) [205] while the latter method requires MATLAB

interfaces (machine learning toolbox API). The uMoDT method was implemented and evaluated

using the PC system equipped with AMD A10-5800K APU with Radeon(tm) HD Graphics (4

CPUs 3.8GHz), 16GB RAM, and NVIDIA GeForce GTX 750 GPU 4GB.

Proposed algorithms, TVS-MoFV for feature extraction and TVS-MoDT for multi-occupant de-

tection and tracking were tested. Both of them used stored TV S_Fseq, which was retrieved from
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the intermediate repository as JSON object arrays, by a pull-based web-service. In TVS-MoFV,

TVS-F vector was obtained by varying binary threshold values and finding the best value, suitable

for each of VOT-TIR2016 benchmark datasets and the TV S_Fseq as mentioned in Table 4.2. The

parametric settings also involved finding the optimal value for the contour area in order to predict

the maximum number of occupants in the benchmarks and TV S_Fseq as shown in Fig. 4.4. These

TVS-F feature vectors support while iterating the multi-occupant represented as Blobs predicted

as bounding rectangles, implemented through the TVS-MoDT algorithm. The Euclidean distance

was calculated between the detected and predicted bounding rectangles for multi-occupant track-

ing frame-by-frame. The processing time for each algorithm and method to process a single frame

is referred to in Table 4.3. The source code for uMoDT method and TV S_Fseq is available on

GitHub at [71].

To recognize multi-occupant’s ADLs from TV S_Fseq, a supervised CNN model was trained.

For this the entire collection of TV S_Fseq was sorted into two subset groups i.e. training and

test categories, each having sixteen classes. The training set is further split with random TSV-F

distribution into two halves i.e. 70% for training samples (TV S_FTrain) and remaining to validate

each class. We used 28,485 TVS-F samples to train CNN model and 1,920 TVS-F test samples

(120 TVS-F for each of 16 classes) to evaluate the prototype uMoDT method application.

The nineteen-layer, CNN architecture is designed based on the findings from the system-

atic comparison and benchmarking to achieve an affordable classification time and computation

cost [206]. The implemented CNN architecture comprises of two units i.e. feature extractor

and a non-linear classifier [168]. The former unit encapsulates fifteen layers (Layer2. . . Layer16)

whereas the latter unit i.e. non-linear classifier is built on all fully connected layers along with the

soft-max classifier. During the model training process, the CNN hyper-parameters were set with

the help of input functions, by adjusting the learning rate effectively to 0.01, every 10 epochs using

Stochastic Gradient Descent with Momentum (SGDM) algorithm with the maximum 20 number

of epochs size [199]. For every iteration, a mini-batch of size 16 (64) was applied for which the

details are mentioned in Table 4.4.. The output of the last ReLU (relu4) at Layer 16, is given to

fully connected layer Layer 17, which uses the features and processes it for class prediction based

on the TV S_FTrain. The classification layer i.e. Layer 18 uses the soft-max activation function,
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which squashes the output probability vector between sixteen multi-occupant activities and returns

the binary indicator to them.
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Figure 4.4: Examples of raw Input (I) frames and processed Output (O) frames using pro-
posed method. (a) & (b) ETHZ-CLA (I&O) (c) & (d) Soccer (I&O) (e) & (f) Crouching (I&O)
(g) & (h) Depthwise Crossing (I&O) (i) & (j) Crowd (I&O) (k) & (l) TVS-F (I&O)
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Figure 4.5: Quantitative evaluations shown in (a) ETHZ-CLA (b) Soccer (c) Crouching (d) Depth-
wise Crossing (e) Crowd (f) TVS-F



Chapter 5
Evaluations and Results

This chapter presents data validation techniques, evaluation and results comparisons for the pro-

posed Semantic Imputation framework for sensor-based and vision-based imputation for HAR.

The results of the proposed framework were also compared with the state-of-the-art methods and

performed experiments, show significant improvement in recognized activities. It is expected that

semantic imputation methods would be a practical solution as compared to existing counterparts.

5.1 Data Validation

This thesis also outlines a strategy to evaluate the statistical properties of incomplete data, val-

idation methods to evaluate modeling of missing data against the amount of missingness. The

validation strategies also provide the basics as to how the observed data with strong statistical

properties have more predictive power for classification models.

In this study, we validated the quality of SemImput solution for obtaining the valid inference

from complete publicly available datasets. It is evident that the quality of multiple imputation

solutions solely depends on statistical properties of complete data as well as for incomplete dataset.

Another important aspect of how much missing data exists in the incomplete datasets. Generally,

quality of missing data inference performs inversely with respect to the amount of missingness.

However, the relationship among strong attributes in the missing data with respect to complete data

or observed data can support the inference and predictive power of the classification models [207].

5.1.1 Performance Evaluations

Data imputation performance issues are mostly linked with the data generation, missingness gen-

eration, missing values identification and evaluation methods. For this study, however, publicly

85
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available HAR datasets are used which are already labelled, containing timestamps and missing-

ness. We considered several evaluation criteria which are discussed in detail. At the same time a

brief detail for the state of the art data validation techniques are also discussed as under.

Accuracy

As a performance evaluation measure, most of the researchers used "accuracy" to measure how

well the imputation model, method or strategy reproduce the original data with a valid reference

usually coming from complete data with all possible instances. The objective, in this case, is to

compute as close as possible data from the reference data using the imputation method whereas

the distance differences are measured between both data. This difference is analyzed through

the accuracy measure between imputed data and observed data, which provides the percentage of

correctly imputed missing values. We computed the accuracy metric for measuring the distance

between the imputed data and reference data using SemImput model. The valid inferences using

the designed ontologies not only deal with bias but also can deal with the artificially created miss-

ingness in the data. So the main goal is of the evaluation is to measure the effect of missingness

on imputation in accordance to the percentage of missingness. Whether the proposed strategy

successfully handles both in an efficient manner accurately and exhaustively.

Distributional Properties

The data distribution properties can also provide a very effective clue as to how the distribution of

the ground truth values is compared with the distribution of the imputed values. Alternatively how

the distribution of the observed values are compared with the distribution of all values including

the imputed values.

In practice, it cannot be promised that the distribution of the incomplete data will be same

as of the observed data. They can differ greatly from each other. It is important to observe and

perform detailed analysis to keep a check on the distributional shale and properties of the data

under consideration. Thus a diagnostic evaluation has to be performed for the datasets coming

from the controlled environment so that proper data imputation strategy is devised to avoid any

anomalies.
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Sampling Variation

During the evaluation process sampling variation can be dealt with two possible approaches such

as: (1). Model-based Simulation and (2). Design-based simulation approach [207]. The afore-

mentioned Model-based simulation draws the samples from the multivariate normal distribution.

During the simulations, the theoretical parameters, which are used to draw the samples from a

known probability distribution act as the comparative truth. Whereas the subsequent approach

of design-based simulation is most suitable where real-life HAR data structures are of interests

i.e. in our case. Such an approach is, however, also suitable in such a situation where the prob-

ability distribution is not available. Such models with sampling variations are considered to be

most computationally convenient where a single complete dataset is under consideration during

simulations.

Quantitative and Qualitative Evaluations

The conclusions for the imputations methods can also be drawn and carefully qualified on the basis

of population parameters. For this, the performance of an imputation technique can be validated

using quantitative evaluations with the support of ground-truth population parameters. However,

the qualitative evaluation using the simulated conditions for imputed values in comparison with

ground-truth becomes more challenging when the imputation performance deviates from normal-

ity. In such circumstances, the qualitative evaluations become highly dependent on the simulation

conditions. The comparative results by avoiding the performance drop, however, can be improved

through non-parametric models. Though these models may perform badly but their results would

still outperform any other approach having more practical relevance [207].

Checking the quality of imputation, which has a very little chance to introduce errors in data

due to observed complete data already modelled into an ontology. So, there is no or little chance of

introducing new patterns as these violate the ontology (T-BOX & A-BOX) consistency properties.

Semantic rules, based on an observed data (Consistent) and a reasoner determines inconsistent

or any invalid data for Test or data with missingness. Any inconsistency in the data is handled

by reasoner resulting in "Unknown", which is catered through the updation / new Semantic rules

representing the respective new activity.
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Internal Consistency

An internal consistency check is one of the most commonly adapted graphical diagnostics method

for performance evaluation over the ground-truth, observed data and imputed data. This method

performs comparisons as an internal check for data to be imputed against the available observed

data. These comparisons are drawn over the ground-truth, missed values and imputed values us-

ing boxplots, histograms, plots for cumulative distribution, quantile-quantile plots, strip plots and

especially histograms. These plots mostly compare ground-truth and imputed data values, which

demonstrates whether the observed values are positively skewed, negatively skewed or symmetri-

cal distribution for imputed values [208].

In this thesis, SemImput, however, ensures all tuples meet the semantic rules, which uses

Pellet reasoner to check logical consistencies, which segregates strong conflicts (those cannot be

resolved) and weak resolvable conflicts. It also provides improvement of the ontology model

to cover all cases and strengthening the weak conflicts by removing structural clash. Semantic

rules are sufficient to handle all type of missingness required for SemImput Ontology representing

activity recognition datasets.

5.1.2 Error Metrics

The performance of imputation methods can be measured using error metrics, which compare ob-

served and imputed data concentrations across several levels of missingness such as 20%, 40%,

60%, 80% missing. HAR based studies are mostly concerned with daily activity data concen-

tration associated with several sensors to measure the health effect. Absolute Bias (AB), Mean

Absolute Percentage Error (MAPE), Coefficient of Determination (CoD), Root Means Square Er-

ror (RMSE), and Mean Absolute Error (MAE) are some of the metrics to evaluate error between

observed and imputed HAR data within smart-home environment [35, 209].

In this thesis, the SemImput model also compares observed and semantically imputed con-

centrations across five levels of aforementioned missingness. It is also observed that anything

less than 10% may be of little influence on the ground truth data. The experimental results also

suggested that augmentation performance for under 50% percent of simulated missingness has a

severe impact.
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Figure 5.1: Error Metrics used for Performance Evaluations.

Absolute Bias

The results obtained through the proposed SemImput method has to be unbiased, as any bias can

influence to misleading results and induce misinterpretation. So a negligible amount of bias for

any parameter may yield infinite bias while calculating relative bias. The bias calculation as an

error metric has to be performed carefully and a suitable method has to be adapted [207].

AB = |ẍ− x̂| (5.1)

Mean Absolute Percentage Error

Similarly, MAPE error metrics provide the percent difference between the ground-truth HAR val-

ues and semantically imputed values. MAPE is again an easily computed and interpretable met-

ric [35].

MAPE =

∣∣∣∣ ẍ− x̂~x
∣∣∣∣ · 100 (5.2)

Coefficient of Determination

Most of the models are evaluated for their goodness of fit measure using the coefficient of deter-

mination, which is also the most common metric. As mentioned in Equation 5.3, it is calculated

by squaring the correlation coefficient between ground-truth variables and imputed variables for
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their concentrations [35].

R2 =

 ∑n
i=1 (xi − x̂) ∗ (ẋi − ẍ)√∑n

i=1 (xi − x̂)2 +
√∑n

i=1 (ẋi − ẍ)2

2

. (5.3)

Here xi and ẋi denotes the ith observation for the ground-truth and imputed datasets, whereas,

x̂i and ẍi represent the means for the semantically imputed and ground-truth dataset. Such an

error metric is widely used across many comparative studies and is an efficient comparable metric.

However, it is subject to the limitation with increase size in the dataset where the imbalance of

data exists between ground-truth and imputed values.

Root Mean Square Error

Another metrics, Root mean square error (RMSE) is widely used for determining the error between

ground-truth and imputed values, which is computed through as mentioned [35]:

RMSE =

√√√√ 1

n

n∑
i=1

(xi − ẋi)2 (5.4)

Such an error metric again suffers the same issue as ofR2 when the dataset size become bigger and

more differences exist between ground-truth and imputed variables. In such a case, these metrics

may not produce appropriate results [35].

Mean Absolute Error

Lastly, mean absolute error (MAE) is another most commonly used metric for error estimation

and evaluation between imputed and observed values [35].

MAE =
1

n

n∑
i=1

|xi − ẋi| (5.5)

MAE, however, is also less affected where large differences amongst the datasets are involved.
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5.2 Results and Discussion for Multi-strategy Data Imputation

The performance evaluation for SemImput framework is measured using non-imputed and seman-

tically imputed HAR datasets. The results are compared with other popular methods, which were

investigated using the same datasets.

5.2.1 Data Description

To compare the HAR performance of the proposed SemImput framework, firstly, the experiments

were performed on the UCamI dataset. It offers recognition of 24 set of activities for non-imputed

and imputed datasets. Secondly, the Opportunity dataset contains manipulative gestures of short

duration such as opening and closing, of Doors, Dishwasher, and Drawers. These were collected

for four subjects who were equipped with five different body attached sensors for the tracking of

static and dynamic activities [210]. Due to the involvement of several sensors, data transmission

problems among wireless sensors lead to segments of data being missed represented by Null. For

this reason, we analyzed the data and performed the required imputation in order to complement

the missing segments of data [77, 192]. Lastly, we tested SemImput framework on the UCI-ADL

dataset, which was collected while monitoring 10 different ADLs [211] using passive infrared,

reed switches, and float sensors. These sensors were used to detect motion, opening and closing

binary states of the objects and activities such as toileting, sleeping, Showering.

5.2.2 Performance Metrics

We measured the impact of imputation against the non-imputed datasets using commonly used

metrics, such as accuracy, precision, and f-measure. The SemDeep-ANN models were validated by

splitting the datasets independently into train and test sets using a leave one day out approach. Dur-

ing the evaluation process, we retained one full day from each of the dataset for testing, whereas

the remaining samples are used as a training set. This process is repeated for each day, with the

overall average accuracy obtained as a performance measure.
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5.2.3 Discussion

This study examines and evaluates the SemImput framework for HAR classification results for

which the precision and recall curves are shown in Figure 5.2 a–d and Figure 5.3 e–h. The frame-

work achieved an overall accuracy of 71.03% for set of activities recognized from non-imputed

UCamI dataset as mentioned in Table 5.1 and Table 5.2. The activity Prepare breakfast (Act02)

yielded the highest precision of 87.55%, but it was also misclassified with the activities Breakfast

(Act05) and Dressing (Act22) respectively. Similarly, the activity Enter the Smartlab (Act10) was

also classified with the highest precision, it was, however, misclassified as the activity Put waste

in the bin (Act15). The activity Breakfast (Act05) with the lowest precision 52.14% was mostly

misclassified as activities Prepare breakfast (Act02) and Wake up (Act24). Furthermore, the activ-

ity Eat a Snack (Act08) with lower precision of 57.95% was misclassified as the activity Prepare

Lunch (Act03) due to the involvement of similar sensors and floor area. The activity Visit in the

SmartLab (Act14) and Wash dishes (Act19) was hard to detect as they have lessor number of an-

notated examples. The experimental results indicate an increased recognition accuracy to 92.62%

after modeling the UCamI dataset into ontology-based complex activity structures and by perform-

ing the semantic imputation as shown in Figure 5.2b. The plot for these illustrates that the activity

Breakfast (Act05) having the lowest recognition precision of 81.54% was most often classified as

the activity Prepare breakfast (Act02). The activities Play a videogame (Act11) and Visit in the

SmartLab (Act14) were recognized with 100% accuracy, which were having lower accuracies with

the non-imputed data. Similarly, the activity Relax on the sofa (Act12) was also recognized with

the highest precision rate of 98.44% as shown in Table 5.2. This suggests that semantic data impu-

tation provided positive data values, which resulted in the increase of classification accuracies for

individual activities.
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Figure 5.2: Classification performance of SemImput framework (UcamI & Opporutunity): Preci-
sion & Recall.
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Figure 5.3: Classification performance of SemImput framework (UCI-ADL): Precision & Recall.
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Table 5.1: Confusion matrix for per-class HAR using non-imputed UCamI dataset
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A
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0

0.69
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0

0
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0
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0
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0
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0
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0
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0
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0
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0
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0
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0

0
0
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0

52.14
0

0
0

0
0

0
0

0
0

0
2.29

8.66
3.08

0
1.00
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0
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0
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0
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0
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0
0

0.78
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0
0

0
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0
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0
0
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A
ct1

2
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0
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0
0
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0

0
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0
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0
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0
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0
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0
75.58

1.16
8.14

0
1.16

0
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0
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0.52
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0.78
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0
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0
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0.39
0

0
74.90
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0
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0
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0.13
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0.40
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Table 5.2: Confusion matrix for per-class HAR using imputed UCamI dataset
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0
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0
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0
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0
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0

0
0
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0

2.75
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0

0
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0
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0
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0
0
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0
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0
0

0
0
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0

0
2.29

8.66
3.08

0
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9.05
2.29

0
11.24

A
ct6

0
0
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0

0
63.85

0
1.38

9.92
1.28

0
5.89

0
0

2.95
0

2.46
0.49

0.59
1.38

0
0.39

0
0

A
ct7

5.89
0

0
13.72

0
0

62.89
0

0
2.12

4.24
0

0
0

4.51
0

2.12
0

0.18
0

0
2.95

1.38
0

A
ct8

1.54
0

11.28
0

0
4.62

0
57.95

4.62
0

0
0

0
0

3.59
0

1.03
3.08

0
7.69

0
4.62

0
0

A
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0

7.28
0

0
2.29

0
1.87

74.01
1.77

0
2.81

0.94
0.31

2.91
0

3.01
1.35

0.10
0.42

0
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0
0

A
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0
0

0
2.23

0
0

0
0

0
0
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0

0
0

2.23
11.17

0
0

0
0
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0

0
0

0
A
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1
0

0
0

2.33
0

0
10.08

0
0

0.78
66.67

0
0

0
6.20

0
6.20

0.78
1.55

0
0

4.65
0.78

0
A
ct1

2
0.34

0
10.14

0
0

0.34
0

0
10.14

1.69
0

71.62
0

0
3.72

0
1.01

1.01
0

0
0

0
0

0
A
ct1

3
0

9.30
0

0
0

1.16
0

0
1.16

0
0

0
75.58

1.16
8.14

0
1.16

0
0

0
1.16

1.16
0

0
A
ct1

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
A
ct1

5
2.33

0
2.20

3.76
0

2.33
2.20

2.20
1.55

3.63
0.26

0.52
5.18

0.78
67.10

0
1.94

0.39
0.39

0.39
0

2.72
0.13

0
A
ct1

6
0

0.76
0

0
0

0
0

0
0

0
0

0
0

0
0

82.58
9.85

1.52
0

0
0

2.27
0

3.03
A
ct1

7
0.51

0.68
0.51

0.51
1.70

1.10
0.59

1.44
2.55

0.34
1.02

0.17
0

0
2.97

8.50
67.20

3.74
0.08

0.17
0.34

4.93
0.34

0.59
A
ct1

8
0

0
2.49

0
0.50

1.49
0

1.99
0

2.99
0

0
0

0
0.50

1.49
11.94

67.66
1.00

5.47
0

1.99
0

0.50
A
ct1

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
A
ct2

0
1.25

1.25
6.25

0
2.50

1.25
0

11.25
0

0
0

0
0

0
2.50

0
3.75

0
2.50

66.25
0

1.25
0

0
A
ct2

1
0

8.49
0

0
9.27

0
0

0
0

0
0

0
0

0
0

1.93
1.54

0.39
0

0
74.90

1.16
0

2.32
A
ct2

2
0.27

2.01
0

0
1.34

0
0.40

0
0

0.13
0.13

0
0.40

0
0.81

0.40
4.83

0.81
0

0.13
0.27

84.30
2.01

1.74
A
ct2

3
0

0
0

0
0

0
2.82

0
0

0
0

0
0

0
1.41

0
2.82

1.41
0

0
0

9.86
81.69

0
A
ct2

4
0

2.75
0

0
12.84

0
0

0
0

0
0

0
0

0
0

4.13
3.21

1.38
0

0
1.83

6.42
0

67.43
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The Opportunity dataset represents 17 ADLs and is of complex nature by hav-

ing missing samples labeled as Null due to sensor disconnections. Figure 5.2c–

d shows the per class precision and recall for recognized ADLs with the Opportu-

nity dataset. The presented framework evaluates the Opportunity dataset without the

’Null’ class by obtaining an overall accuracy of 86.57%, and an increased accuracy

with the imputed dataset by 91.71%. The comparisons for both confusion matrices are

shown in Table 5.3 and Table 5.4.
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Table 5.3: Confusion matrix for per-class HAR using non-imputed Opportunity dataset

(Im
puted

)

G
round

Truth
A

ctivities

OpenDoor1

OpenDoor2

CloseDoor1

CloseDoor2

OpenFridge

CloseFridge

OpenDishwasher

CloseDishwasher

OpenDrawer1

CloseDrawer1

OpenDrawer2

CloseDrawer2

OpenDrawer3

CloseDrawer3

CleanTable

DrinkfromCup

ToggleSwitch

Predicted Activities

O
p
en
D
oor1

90.00
0

10.00
0

0
0

0
0

0
0

0
0

0
0

0
0

0
O
p
en
D
oor2

0
92.26

0
1.19

0
0

0
0

0.60
1.79

0
1.19

2.98
0

0
0

0
C
loseD

oor1
1.16

0
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0
1.16

1.16
5.81

0
0

0
0

0
0

0
0

0
0

C
loseD

oor2
0

3.62
0
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0

0
0

0.72
0.72

0.72
0

0
0

0
0

0
0

O
p
en
F
rid
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e

0.52
0

0
0
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5.67

0.52
0

0
0

0
0

0
0

0
0

0.26
C
loseF
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g
e

0
0.79

0
0

1.98
96.84

0
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0
0

0
0

0
0

0
0

0
O
p
en
D
ish

w
a
sh
er

0.56
0

0
0

3.35
0
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2.23

0.56
0

0
0

0
0

0
0

0
C
loseD
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w
a
sh
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0
0

0
0

1.55
0
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0
0

0
0.78

0
0

0
0

0
O
p
en
D
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w
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0
1.75

0
0

0
0

5.26
1.75
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10.53

3.51
1.75

5.26
1.75

0
0

1.75
C
loseD

ra
w
er1

1.06
1.06

1.06
0

1.06
0

5.32
0

1.06
82.98

0
0

0
1.06

3.19
2.13

0
O
p
en
D
ra
w
er2

0
1.41

0
0

5.63
0

0
1.41

8.45
2.82

66.20
8.45

1.41
0

0
2.82

1.41
C
loseD

ra
w
er2

0
4.76

0
0

0
0

0
4.76

2.38
11.90

9.52
59.52

0
7.14

0
0

0
O
p
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D
ra
w
er3

0
2.94

0
0

0
0

0
0

0
0

7.84
0

86.27
2.94

0
0

0
C
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w
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0
0

0
0

0
0

0
0

0
0
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0
0

0
C
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n
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0
0

0
0

0
0

0
0

0
0
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0
0

95.00
1.11

0
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u
p

0.17
0

0
0

0
0

0.17
0.17

0
0.34

0.51
0

0
0.51

0.51
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0
T
og
g
leS

w
itch

0
0

0
0

0
0

0
0

1.00
1.00

0
0
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1.49

0
0

95.02
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Table 5.4: Confusion matrix for per-class HAR using imputed Opportunity dataset

(N
on-im

puted
)
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Truth
A

ctivities
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OpenDishwasher

CloseDishwasher

OpenDrawer1

CloseDrawer1

OpenDrawer2

CloseDrawer2

OpenDrawer3

CloseDrawer3

CleanTable

DrinkfromCup

ToggleSwitch

Predicted Activities

O
p
en
D
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0

16.33
0

0
0

0
0

0
0

0
0

0
0

0
0
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O
p
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D
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0
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0.62
7.41

0
0

0
0

0
0

0
0

0
0

0
0

0
C
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0
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0
0

0
0

0
0

0
0

0
0

0
0

0
0

C
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0

0
0

0
0

0
0
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0

0
0

0
0
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0.26

0
0
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0.51

0
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C
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94.16

0
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0
0

0
0

0
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O
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0

0
0
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0
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2.99
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0
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0
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0
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C
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a
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0
0

0
0
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0
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0
0

0
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0
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0
0.73
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O
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D
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w
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0
0

0
0

0
0

1.49
2.99
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0
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0
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0
0
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C
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0
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0
0
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0

0
0
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0

0
0
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0
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D
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0
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0
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0
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0
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0
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C
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w
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0
0

2.13
0

0
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0

0
0

0
O
p
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D
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w
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0
0

0
0

0
0
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0

1.77
0
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0
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C
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ra
w
er3

0
0

0
0

0
0

0
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0

0
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0
0

0
C
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0
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0.59
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0

0
0

0
0

0
0
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u
p
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0
0
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0
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0
T
og
g
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0
0

0.58
0

0.58
0

0
0
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1.75

0
0

0
0

0.58
0.58
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As shown in Figure 5.3e–f for the UCI-ADL Ordóñez-A raw dataset, an overall classification

result with 82.27% accuracy was obtained. It included activities like Grooming, Spare_Time/TV,

and Toileting having the most number of instances and the activity Lunch with minimum number
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of instances. However, the classification results as mentioned in Table 5.5 show that the activities

Leaving and Breakfast have the highest recognition accuracy as compared to the activity Groom-

ing with the lower classification accuracy. In order to verify the proposed SemImput framework,

it was also tested on the semantically imputed UCI-ADL Ordóñez-A dataset. This resulted in an

increased recognition accuracy for activities such as Breakfast, Lunch, and Leaving significantly

as shown in Figure 5.3f. It was due to the introduction of the semantic structure understanding of

events with respect to morning, afternoon, and generalization of semantic rules for such activities

for imputing missing values. The improvement in statistical quality through imputation raised the

recognition accuracy significantly up to 89.20%. Similarly, an increased performance is also ob-

served for the UCI-ADL Ordóñez-B dataset for the overall activities with imputed data, especially

for the Dinner and Showering as shown in Table 5.6. The global accuracy for UCI-ADL Ordóñez-

B dataset was improved from 84.0% to 90.34%, which also proves the significance of proposed

framework as shown in Table 5.7.
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Table 5.5: Confusion matrix for per-class HAR using non-imputed & imputed UCI-ADL (Or-
dóñezA) dataset

(Non-imputed)

Ground Truth Activities

B
re
a
k
f
a
st

G
ro
om

in
g

L
ea
v
in
g

L
u
n
ch

S
h
ow
er
in
g

S
le
ep
in
g

S
n
a
ck

S
p
a
re

_T
im
e/
T
V

T
oi
le
ti
n
g

Pr
ed

ic
te

d
A

ct
iv

iti
es

Breakfast 89.12 0.20 2.20 0.74 3.21 3.92 0 0.51 0.10
Grooming 2.46 71.00 9.21 2.30 5.26 6.67 2.01 0.62 0.47
Leaving 0.23 0.02 91.12 0.23 0.32 2.23 2.73 3.02 0.10
Lunch 3.20 0.09 0.10 84.41 3.62 4.61 3.26 0.12 0.59

Showering 0.01 5.30 0 0 79.12 4.33 8.64 0.32 2.28
Sleeping 0 4.49 0.01 0 5.21 77.15 6.23 0.20 6.71
Snack 0.12 0.02 0.04 3.32 12.54 0.02 77.50 3.20 3.24

Spare_Time/TV 0.05 0.10 0 0.02 4.32 0.88 0 85.10 9.54
Toileting 1.20 1.05 0.18 0.12 8.12 1.20 0 0 88.13

(Imputed)

Ground Truth Activities

B
re
a
k
f
a
st

G
ro
om

in
g

L
ea
v
in
g

L
u
n
ch

S
h
ow
er
in
g

S
le
ep
in
g

S
n
a
ck

S
p
a
re

_T
im
e/
T
V

T
oi
le
ti
n
g

Pr
ed

ic
te

d
A

ct
iv

iti
es

Breakfast 96.51 0.21 0.35 1.21 0.32 0.01 0.04 0.02 1.33
Grooming 0.12 88.01 7.20 3.39 0.83 0.04 0.18 0 0.23
Leaving 0.14 0.21 94.02 0 0.50 1.79 3.10 0.13 0.11
Lunch 1.21 4.45 1.65 91.12 0.75 0.41 0.03 0.38 0

Showering 0 0.62 0.75 2.10 85.23 2.20 6.11 2.98 0.01
Sleeping 0.87 0.55 0.02 5.45 4.39 88.69 0.01 0.02 0
Snack 0.01 0.74 0 5.64 2.21 6.88 77.02 7.01 0.49

Spare_Time/TV 0 0.43 0 1.20 1.35 0.35 0.40 92.45 3.82
Toileting 1.01 0 0 0 8.60 0 0 1.32 89.07
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Table 5.6: Confusion matrix for per-class HAR using non-imputed & imputed UCI-ADL (Or-
dóñezB) dataset
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Breakfast 88.95 1.65 0 0.01 3.45 0.06 0.08 4.21 1.36 0.23
Dinner 0.64 81.06 1.23 0.98 4.55 0.16 1.88 7.26 2.24 0
Grooming 0.35 0.12 76.43 0.21 0 1.18 16.23 0.45 4.61 0.42
Leaving 0 0.02 0.29 91.49 0.36 0.12 0 0.30 3.10 4.32
Lunch 2.01 1.71 2.36 0.92 83.90 0.26 0.08 4.68 3.45 0.63

Showering 0.83 1.65 1.65 3.70 0 83.17 0.61 0.84 0.12 7.43
Sleeping 2.34 4.65 3.87 4.62 0.15 2.64 81.73 0 0 0
Snack 1.60 0.65 0.23 0 0.45 0 0 77.92 5.75 13.40

SpareT ime/TV 0 0 2.89 0.54 0.03 6.25 0 0 90.29 0
Toileting 0.03 0 1.01 0.50 0.32 8.16 0.90 0 3.08 86.00

(Imputed)

Ground Truth Activities
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Breakfast 97.10 0.01 0.20 0.12 0 0.65 0.32 1.41 0 0.19
Dinner 0.80 87.90 1.65 0.65 1.32 0.53 2.64 3.21 1.21 0.09
Grooming 0.32 2.40 86.69 0.07 2.45 2.89 0.05 4.08 0.10 0.95
Leaving 0.01 1.12 0.98 94.01 0.51 0.03 1.32 0.85 0.05 1.12
Lunch 0.45 0.06 0 1.32 94.30 0.12 1.24 1.19 1.32 0

Showering 0.78 1.36 1.40 0.45 0.09 94.47 0.08 0.01 0.24 1.12
Sleeping 0.63 1.89 0 1.61 0.65 3.99 89.87 0.31 0.08 0.97
Snack 1.10 2.45 1.77 1.74 1.11 0.99 2.10 85.10 2.49 1.15

SpareT ime/TV 0 0.32 0.65 0.89 0.47 1.54 3.19 2.15 90.58 0.21
Toileting 0.01 0.09 1.05 0.45 0.25 7.14 0.06 0.89 1.11 88.95

Table 5.7: Recognition accuracy gain using the proposed SemImput framework. (Unit:%)

Method Datasets Number of (Mean Recognition Accuracy) Standard
Activities Non-Imputed Imputed Deviation

Proposed SemImput

Opportunity [26] 17 86.57 91.71 ±2.57
UCI-ADL OrdóñezA [211] 9 82.27 89.20 ± 3.47
UCI-ADL OrdóñezB [211] 10 84.0 90.34 ± 3.17

UCamI [1] 24 71.03 92.62 ±10.80

As shown in Table 5.8, the proposed SemImput framework along with SemDeep-ANN model

not only improved the recognition rate for individual activities within the datasets but also im-

proved the global accuracy over each dataset. We also compared the activity classification per-

formance of our framework with a different state-of-the-art methods. The presented results show
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the potential of SemImput framework with significant accuracy gain. Although for the UCI-ADL

Ordóñez-A and Opportunity datasets, our methodology was worse, it still achieved significant

recognition performance score of 89.20% and 91.71%, respectively. These findings show that

combining the ADLs classification with semantic imputation can lead to comparatively better

HAR performance.

Table 5.8: Comparison results of the proposed SemImput framework with state-of-the-art HAR
methods.

State-of-the-Art Datasets Number of Mean Recognition SemImput
methods Activities Accuracy(%) Gain

Razzaq et al. [115] UCamI [1] 24 47.01 +45.61
Salomón et al. [212] UCamI [1] 24 90.65 +1.97

Li et al. [192] Opportunity [26] 17 92.21 -0.50

Salguero et al. [77, 152]
UCI-ADL OrdóñezA [211] 9 95.78 -6.58
UCI-ADL OrdóñezB [211] 10 86.51 +3.83

5.3 Results and Discussion for Vision-based Multioccupant State Im-

putation

In literature there exist several performance measures to deal with single-target and multi-target

tracking, however, none of them proved to be a defacto standard. In our experiments, we adopted

some of the effective multi-occupant detection and tracking evaluation strategies to: a) detect

and track the multi-occupants and b) classify multi-occupant activities in TV S_Fseq. For this, we

investigated frame properties in the sequences to identify the influence of different parameters such

as variable thresholds and overlap measures on the overall performance. Moreover, conformity

of evaluation measures to any other application and sequence have been proven by the uMoDT

framework on VOT-TIR2016 sequences other than TV S_Fseq.

5.3.1 Multi-occupant detection and tracking evaluation

Objectively quantitative assessment of multi-occupant detection and tracking is not a straight for-

ward task. Most of the evaluation techniques require a ground-truth Gi, which serves as a reference

to measure the performance quantitatively. We adopted such evaluation methods, which rely on
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frame based spatial overlap between Gi and bounding rectangles BRn [213].

Evaluation metrics

The object detection in benchmark sequences and multi-occupant detection in TV S_Fseq uses

standard Pascal, Intersection over Union (IoU) criterion, a natural bounding box evaluation mea-

sure for comparing spatial overlap and localization accuracy [202]:

IoU(BRn, Gi) =
BRn ∩Gi

BRn ∪Gi
(5.6)

Performance evaluation and analysis

We take the advantage of the Counting algorithm to estimate number of occupants against Gi

frame-wise in each of the sequence [214]. In our experiments, we considered count detection as

true positive (TP) for IoU greater than 0.5 otherwise as false positive (FP). For IoU<0.5, however,

we also considered rotated BRn locations for each object obtained from KF in the frame to see if

updated object state has any spatial overlap relation with ground-truth. Fig. 4.5(a-f) present results

for Gi, detected, and KF predicted BRn frame-wise in each sequence. The best counting success

rate is achieved by using improved frame pre-processing algorithms TVS-MoFV (5) and TVS-

MoDT (6) for the Soccer sequence with around 94.76% whereas TV S_Fseq achieved a counting

accuracy of 88.46%. Results by the counting algorithm using KF predicted occupants exhibit

an excellent performance for each sequence where occupants are well separated in the frames as

compared to the sequences in which they are occluded by each other.

Table 5.9: Evaluation comparison of the uMoDT framework for benchmark sequences and
TV S_Fseq

Name FP↓ FN↓ MOTA↑ IDS↓ Precision↑ Recall↑ MSE↓

D
at

as
et

ETHZ-CLA 441 414 5.58 210 0.61 0.44 1.04
Soccer 311 1540 74.42 246 0.94 0.39 5.19

Crouching 163 428 57.17 243 0.80 0.29 1.08
Depthwise 456 408 53.03 180 0.72 0.38 0.96

Crowd 110 211 57.40 110 0.81 0.41 12.27
TV S_Fseq 52 469 64.26 72 0.87 0.42 0.84
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Figure 5.4: ROC curves for benchmark sequences and TV S_Fseq

To evaluate multi-occupant detection and tracking performance, it is not suitable to use only

one single metrics, therefore, we extend the frame-wise IoU overlap measure for performance

evaluation by estimating Multiple Object Tracking Accuracy (MOTA), an accepted evaluation

measure [220]. MOTA measure also takes into account the impact of erroneous responses such

as: false negatives (FNt), false positives (FPt), number of identity switches IDSt, and Gt at time

t. By combining these sources of error, MOTA is defined as:

MOTA = 1−
∑

t (FNt + FPt + IDSt)∑
tGt

(5.7)

We report quantitative evaluations and comparative analysis through the experiments over a set

of test sequences for frame-based detection and tracking in Tables 5.9 and 5.10 respectively. It

is evident that the uMoDT framework demonstrated better performance in terms of MOTA for

benchmark sequences and TV S_Fseq. It outperformed other techniques on all sequences espe-

cially for Soccer sequence and TV S_Fseq with MOTA scores of 74.42% and 64.26% respectively.
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Table 5.10: Evaluation comparison for the uMoDT framework against other techniques

Name FP↓ FN↓ MOTA↑ IDS↓

M
et

ho
d

Bochinski et al. [215] 5702 70278 57.1 2167
Wan et al. [216] 10604 56182 62.6 1389

Bewley et al. [217] 7318 32615 33.4 1001
Murray et al. [218] 3130 76202 27.4 786
Chen et al. [219] 9253 85431 47.6 792
Gade et al. [214] 9.8% 18.8% 70.36 219

uMoDT (TV S_Fseq) 52 469 64.26 72

Additionally, the Mean Squared Error (MSE) between the localization of predicted BRn and Gi

was also computed as:

MSE =
1

n

n∑
i=1

(BRn −Gi)
2 (5.8)

The error rates showed lowest MSE value of 0.84, which was achieved for TV S_Fseq and a

highest MSE value of 12.27 for Crowd sequence. The tabulated results, however, showed a higher

number of IDSt, an increased MSE, and a decreased MOTA, which appeared to be from occlusions

and deforming blobs.

The performance of uMoDT is also compared by constructing ROC curves for accumulated

true detection rates and false positive rates using Gi and predicted BRn with IoU>0.5 as shown

in Fig. 5.4. The ROC curve produced by TV S_Fseq has shown a larger area under the curve

than other sequences. This suggests and validates the robustness of the proposed algorithm for

occupant detection. TV S_Fseq has lessor FPR, which is due to minimal occlusion as compared to

other sequences especially in Crowd sequence, which has maximum occlusion. Fig. 5.5 shows the

resulting precision-recall curves based on overlap metric. Such a quantitative analysis proves as

how successfully the BRn are predicted for Gi in the benchmark sequences and TV S_Fseq. The

uMoDT framework achieved a highest area under the curves with an average 97.16% precision

rate for TV S_Fseq and the lowest one with around 72.04% for ETHZ-CLA sequence.
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Figure 5.5: Precision-recall curves for benchmark sequences and TV S_Fseq

uMoDT robustness

To assess the ability of the uMoDT framework as how it deals with the tracking failure, we further

quantify it for robustness measure correlated with accuracy. Robustness refers to the uMoDT fail-

ures whenever the overlap IoU measure becomes equal to zero. To measure the average overlap

areas and complete failures, these measures are intuitively computed for benchmark sequences

with IoU threshold value equal to zero. We also assumed each occupant in a frame as a separate

entity, represented by an independent motion trajectory to evaluate tracking performance [221].

The resulting robustness, however, in some cases does not have an upper bound so it was inter-

preted as a reliability, defined by e−S(F0/N) for visualizing purpose [222, 223]. Here N denotes

number of frames for an individual sequence, S represents the number of frames since the last

failure, and F0 is a failure rate, which is set as IoU equal to zero. We executed the uMoDT frame-

work separately for each sequence to record their average scores, failure rate and unsupervised

re-initialization for multi-occupants.
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Figure 5.6: Accuracy-robustness plot for the uMoDT with benchmarks and TV S_Fseq

Fig. 5.6 demonstrates the effectiveness of the uMoDT framework, which proved to be most

robust on TVS-F sequence (positioned most right) but it was surpassed by Crouching sequence,

which appeared to be more accurate (positioned higher). The observed high robustness for

TV S_Fseq is because of no occlusion, static distinguishable background and quality of multi-

occupant estimates using KF. On the other hand, high average accuracy for Crouching sequence is

observed, which is due to frequent re-initialization as occupant’s appearance is challenging which

matches with background. The uMoDT framework performed differently between the benchmark

sequences depending on their frame properties, however, it achieved an overall best performance

except for the Crowd sequence (positioned lowered). At a closer look, we see that in terms of accu-

racy it is challenging as occupants are not well distinguishable from background and also frequent

uMoDT failures occur due to occlusions. It still, however, has achieved satisfactory robustness.
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5.3.2 Multi-occupant activity recognition

In the following subsection, to show the generality of the TVS-AR method, we describe and eval-

uate the proposed CNN-based model using the TV S_Fseq for AR. We present the classification

results to prove the performance and suitability of the presented approach using low-resolution

TV S_Fseq in terms of accuracy [224]. We used frame-based approach for recognizing 16 differ-

ent activities showing the efficacy of a model by demonstrating it for a high HAR accuracy score

of approximately 90.99%.

Activity recognition evaluation metrics

The performance metric that is most widely used to evaluate a classifier in the context of multiclass

classification is overall accuracy [196]. The recognition accuracy is linear to the number of train-

ing frames. The training frames were used to fit in the parameters such as weights, validation set

to fine tune the parameters and CNN architecture. The performance of the customized CNN was

evaluated on validation split as a test data to validate the generalization and prediction power of

the classifier. Additionally, the other most common performance evaluation metrics such as preci-

sion, recall, F-measure also provided an essential information required to assess the classification

model [75].

Performance evaluation of activities

For each experiment, we followed the data splits and cross-validation evaluation technique for

TV S_Fseq. We divided TV S_Fseq into three splits: training split TV S_FTrain to train CNN

model, validation split to tune the hyper-parameters such as learning rate, epoch size on unseen

data, and finally test split to evaluate the classification performance. An average accuracy of

97.34% was achieved with a learning rate of 0.01 for 28,485 TV S_Fseq. A drop in accuracy,

however, was observed with a decrease in the learning rate. The test split contained 1,920 TVS-F

for validating 16 activities as mentioned in the confusion matrix illustrated through Table 5.11.

It is observed that the TVS-AR method accurately classified most of single-occupant and multi-

occupant activities. Nevertheless, some confusion has been observed for multi-occupant activities

such as StandingWalking (Act10) and StandingStretching (Act9) have been confused due to similar
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Figure 5.7: Classification accuracy using CNN for test TVS-F

motion patterns for Walking and Stretching. This is due to the activity Stretching, which involves

extension of arms and returning to their original position, again sharing motion patterns to the

activity Standing in a TV S_Fseq. Similarly, static multi-occupant activities SittingSitting (Act3)

and StandingStanding (Act8) share similar occupant appearances in the TV S_Fseq. For these, the

activities Standing and Sitting were confused due to similar heat maps in the frames. Furthermore,

Fig. 5.7 shows the evaluation metrics in terms of Precision, Recall and F-Measure. By visualizing

these, it can be concluded that multi-occupant activity i.e. (Act8) with both occupants Standing

and (Act10) with one occupant Standing and other one Walking has shown the lowest performance

for the test split of TV S_Fseq.
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Table 5.11: Average accuracy confusion matrix for multi-occupant HAR
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Chapter 6
Conclusion and Future Direction

This chapter finally draws the dissertation conclusions, provides evidence for future directions and

also discloses potential applications where the proposed methodology can be applied for better

outcomes.

6.1 Conclusion

This thesis proposed a novel SemImput framework to perform Semantic Imputation for missing

data using public datasets for offline recognition of ADLs. It leverages the strengths of both

structure-based and instance-based similarities while performing semantic data imputation. By

using ontological model SemImputOnt, it uses SPARQL queries executed over the ABox data for

semantic data expansion, conjunction separation, identification of missing attributes, and their in-

stances leading towards semantic imputation. In order to further increase the quality of the data,

we also utilized time-series longitudinal imputation. The obtained results and presented analysis

suggest that gain in recognition accuracy varies with the nature and quality of dataset through the

SemImput. We validated it, over UCamI, Opportunity, and UCI-ADL datasets. It achieves the

highest accuracy of 92.62% for UCamI dataset using a SemDeep-ANN pre-trained model. A sub-

stantial, comprehensive, and comparative analysis with state-of-the-art methodologies for these

three datasets were also performed and presented in this paper. Based on the empirical evaluation,

it was shown that DeepSem-ANN consistently performed well on semantically imputed data by

achieving an improved overall classification accuracy. Such a technique can be applied for HAR

based systems, which generate data from obtrusive and unobtrusive sources in a smart environ-

ment. In this work, we proposed and demonstrated an unobtrusive Multi-occupant Detection and

Tracking (uMoDT) framework for HAR based on low-resolution TVS. In this study, by using a

112
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binarization technique with Gaussian filter for smoothing, a morphological improvement with in-

version and dilation process, an individual occupant in the form of the blob was detected over

a sequence of frames. This blob was further tracked by using a KF with location improvement

and evaluated with Intersection over Union (IoU). The above methods achieved detection and

tracking accuracy of 88.46% for Thermal Vision Sensor frame sequence (TV S_Fseq). Addition-

ally, a CNN-based multi-occupant HAR method was evaluated, achieving a validation accuracy

of 97.34% and an accuracy of 90.99% for classification tasks. This experimentation demonstrates

improvements in occupant detection and, activity association using TVS. The experimental eval-

uation using state-of-the-art benchmark datasets also revealed the robustness and effectiveness of

the proposed framework. Further improvements may be achieved by introducing multiple TVS(s)

for HAR. These settings may include movable TVS to recognize ADLs for more complex scenar-

ios at different indoor locations.

Figure 6.1: Semantic Data Imputation Evaluation & Prediction Conceptual model

6.2 Future Direction

The performed experimental study also shows that there is no universally best imputation method

and the mean imputation is shown to be the least beneficial [146]. In the future, we plan to ex-

plore, execute, and enhance the SemImput framework for real-time HAR systems Fig. 6.1. The

presented conceptual model is a complex framework in which every subcomponent interacts with

others. The idea here is to use the Semantic Imputation methodology as a prediction, which is
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thoroughly analyzed and evaluated based on the ground-truth before the Data Completion task.

Furthermore, we plan to extend our methodology for improving longitudinal imputation as some

accuracy degradation is observed while recognizing HAR. We believe that our proposed concep-

tualization of methodology will help in increasing the quality of smart-home data by performing

missing data imputation and will increase the recognition accuracy. On the negative side, the

SemImput framework requires an ontology modeling effort for any activity inclusion or an intro-

duction of a new dataset. For this, we plan to explore a scheme for unified activity modeling

ontology for representing the same activities and investigate it further for HAR performance.

6.3 Potential Applications

The presented research can be directly applied to healthcare applications, entertainment and

games, home and office automation, industrial applications, security and surveillance involving

human movement. However, applying this technique to the aforementioned domains would re-

quire domain-specific ontologies to handle data preprocessing challenges.

There exist several knowledge-based medical systems under health discipline, which uses mul-

tiple imputation methods required to estimate the missing data are widely acknowledged. Simi-

larly, data imputation methodologies are also supporting missing data identification in environ-

mental domains. where multiple strategies are adopted to predict missing data for environmental

sensors. In the research and real-world, imputation techniques are also applied over the survey data

and industrial databases where data mining methods are used to identify and extract patterns over

the big-data. These patterns are used to extract useful information using machine learning-based

statistical algorithms to replace the missing values where necessary. As discussed previously, var-

ious applications opt for multiple imputations, which is believed to be more superior over single

imputation methods where the missing data mechanism is MAR. However, in such a situation, a

suitable method to perform multiple imputation has to be adopted to deal with the imputation bat-

tles. These challenges become even more complex where several ML-based application software

is used to perform perfect prediction [225].

As far as vision-based activity recognition is concerned, it has been a research focus since

long due to its unavoidable importance in the field of human-computer interaction, robot industry,
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user-interface/user-experience, and surveillance systems. In these application areas, research has

widely deployed a variety of modalities, RGB single camera, infrared devices or thermal cameras

to capture human contexts. Using these methodologies various application scenarios have been in-

vestigated and yet to be explored fully, which include single object tracking, group tracking, crow

sensing or recognitions. Additionally, vision-based systems have also proved to be an important

area for surveillance, suspicious activity monitoring or robot learning.
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F. Porikli, and L. Čehovin, “A novel performance evaluation methodology for single-target

trackers,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 11,

pp. 2137–2155, Nov 2016.

[203] Tzutalin, “Labelimg: Image annotation tool,” https://github.com/tzutalin/labelImg, ac-

cessed: 2018-12-25.

[204] VOT2016, “Vot2016 benchmark,” http://www.votchallenge.net/vot2016/, accessed: 2018-

12-25.

[205] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[206] D. Mishkin, N. Sergievskiy, and J. Matas, “Systematic evaluation of convolution neural

network advances on the imagenet,” Computer Vision and Image Understanding, vol. 161,

pp. 11–19, 2017.

[207] G. Vink, “Towards a standardized evaluation of multiple imputation routines,” 2016.

[208] C. D. Nguyen, J. B. Carlin, and K. J. Lee, “Model checking in multiple imputation: an

overview and case study,” Emerging themes in epidemiology, vol. 14, no. 1, p. 8, 2017.

[209] A. Sundararajan and A. I. Sarwat, “Evaluation of missing data imputation methods for an

enhanced distributed pv generation prediction,” in Proceedings of the Future Technologies

Conference. Springer, 2019, pp. 590–609.

[210] L. Peng, L. Chen, Z. Ye, and Y. Zhang, “Aroma: A deep multi-task learning based simple

and complex human activity recognition method using wearable sensors,” Proceedings of

the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 2, p. 74,

2018.

[211] F. Ordóñez, P. de Toledo, A. Sanchis et al., “Activity recognition using hybrid genera-

tive/discriminative models on home environments using binary sensors,” Sensors, vol. 13,

no. 5, pp. 5460–5477, 2013.

https://github.com/tzutalin/labelImg
http://www.votchallenge.net/vot2016/


BIBLIOGRAPHY 138
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Appendix A
List of Acronyms

Acronyms

In alphabetical order:

ADL Activities of Daily Living

BLE Bluetooth Low Energy

BR Bounding Rectangle

CNN Convolutional Neural Network

CV Computer Vision

HAR Human Activity Recognition

IoU Intersection over Union

KF Kalman fltering

LOCF Last Observation Carried Forward

MAR Missing at Random

MCAR Missing Completely at Random

MNAR Missing not at Random

MOT Multi-object Tracking

MOTA Multiple Object Tracking Accuracy
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MSE Mean Squared Error

NOCB Next Observation Carried Backward

OWL Web Ontology Language

ReLU Rectifed Linear Unit

ROI Region of Interest

SemDeep ANN Semantic Deep Artificial Neural Network

SemImput Semantic Imputation

SemImputOnt Semantic Imputation Ontology

SGDM Stochastic Gradient Descent with Momentum

TIR Thermal Infrared

TVS Thermal Vision Sensor

TVS-F Thermal Vision Sensor Frame

TVS-Fseq TVS frame sequence

TVS-MoFV Thermal Vision Sensor Multi-occupant feature vector

uMoDT unobtrusive Multi-occupant Detection and Tracking
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